GROUNDWATER
Making the invisible visible
GROUNDWATER
Making the invisible visible
The vast potential of groundwater and the need to manage it sustainably can no longer be overlooked

Accounting for approximately 99% of all liquid freshwater on Earth, groundwater has the potential to provide societies with tremendous social, economic and environmental benefits and opportunities. Groundwater already provides half of the volume of water withdrawn for domestic use by the global population, including the drinking water for the vast majority of the rural population who do not get their water delivered to them via public or private supply systems, and around 25% of all water withdrawn for irrigation. However, this natural resource is often poorly understood, and consequently undervalued, mismanaged and even abused.

Groundwater is central to the fight against poverty, to food and water security, to the creation of decent jobs, to socio-economic development, and to the resilience of societies and economies to climate change. Reliance on groundwater will only increase, mainly due to growing water demand by all sectors combined with increasing variation in rainfall patterns.

The report describes the challenges and opportunities associated with the development, management and governance of groundwater across the world. It aims to establish a clear understanding of the role that groundwater plays in daily life, of its interactions with people, and of the opportunities for optimizing its use in order to ensure the long-term sustainability of this largely available yet fragile resource.

Unlocking the full potential of groundwater will require strong and concerted efforts to manage and use it sustainably. And it all starts by making the invisible visible.
Foreword by Audrey Azoulay, Director-General of UNESCO .. viii
Foreword by Gilbert F. Houngbo, Chair of UN-Water and President of IFAD ix
Preface .. x
WWDR 2022 Team .. xii
Acknowledgements .. xiii
Executive summary .. 1
Prologue State of groundwater resources .. 11
 Freshwater volumes .. 12
 Freshwater renewal .. 12
 Freshwater withdrawal, water stress and water scarcity .. 15
 Groundwater resources and their geographical distribution .. 17
 Groundwater withdrawal and use ... 19
 Area-specific natural constraints to groundwater withdrawal ... 19
Chapter 1 Introduction .. 23
 1.1 Purpose and scope of this report ... 24
 1.2 Unique properties and characteristics of groundwater and groundwater systems 25
 1.3 Aquifers, their main characteristics and the groundwater resources they contain 26
 1.4 Brief history of groundwater development ... 29
 1.5 The multiple services offered by groundwater to humankind and to ecosystems 30
 1.6 Global interconnections .. 31
 1.7 Groundwater in the context of global agendas and frameworks 32
 1.8 Challenges related to groundwater .. 34
 1.9 Opportunities for enhancing benefits from groundwater .. 37
Chapter 2 Legal and other institutional aspects of groundwater governance 39
 2.1 Groundwater governance and management .. 40
 2.2 Legal instruments ... 42
 2.3 Institutional aspects ... 45
Chapter 3 Groundwater and agriculture .. 47
 3.1 Introduction ... 48
 3.2 Groundwater use in the agricultural sector ... 48
 3.3 Impacts of agriculture on groundwater quantity .. 52
 3.4 Agricultural lands with shallow groundwater tables .. 54
 3.5 Impacts of agriculture on groundwater quality ... 54
 3.6 Groundwater and energy linkages in irrigation ... 57
Chapter 4 Groundwater for human settlements 59
 4.1 Introduction ... 60
 4.2 Urban water supply ... 62
 4.3 Rural water supply ... 67
 4.4 Environmental concerns .. 69
 4.5 Role of stakeholders ... 71
 4.6 Concluding remarks ... 71

Chapter 5 Groundwater and industry .. 73
 5.1 Context .. 74
 5.2 Groundwater abstraction and use in industry 74
 5.3 Industry, groundwater quality and pollution 78
 5.4 Mining and groundwater .. 80
 5.5 Energy, power production and groundwater 83
 5.6 Industry and groundwater accountability 86
 5.7 Moving forward ... 88

Chapter 6 Groundwater and ecosystems ... 89
 6.1 Introduction to groundwater-dependent ecosystems 90
 6.2 Ubiquity of groundwater-dependent ecosystems 93
 6.3 Groundwater ecosystem services and threats 94
 6.4 Conjunctive water and land management, nature-based solutions, and ecosystem protection .. 97

Chapter 7 Groundwater, aquifers and climate change 101
 7.1 Introduction ... 102
 7.2 Climate change impacts on groundwater resources 102
 7.3 Resilience and vulnerability of aquifer systems to climate change 108
 7.4 Groundwater-based adaptations to climate change – human responses ... 110
 7.5 Groundwater-based climate change mitigation via low-carbon geothermal energy .. 110
 7.6 Climate change mitigation through carbon capture and sequestration .. 114

Chapter 8 Regional perspectives on groundwater 115
 8.1 Sub-Saharan Africa ... 116
 8.2 Europe and North America ... 121
 8.3 Latin America and the Caribbean ... 128
 8.4 Asia and the Pacific .. 133
 8.5 The Arab region ... 138

Chapter 9 Building and updating the knowledge base 143
 9.1 Introduction ... 144
 9.2 Studying groundwater: characterization and assessment 144
 9.3 Groundwater monitoring .. 148
 9.4 Scenario analysis and uncertainty of predictions 151
 9.5 Sharing the knowledge base and building capacities 152
<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Groundwater policy and planning</th>
<th>155</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Groundwater policy</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>10.2 Examples of groundwater policies</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>10.3 Groundwater management planning</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>10.4 Examples of groundwater management planning</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Groundwater management</td>
<td>163</td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>11.2 Data and knowledge requirements</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>11.3 Controlling withdrawals</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>11.4 Protecting groundwater quality</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>11.5 Integrated management approaches</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>11.6 Conclusions</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Transboundary aquifers</td>
<td>171</td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>12.2 Current understanding of transboundary aquifers</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>12.3 Challenges specific to transboundary aquifers</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>12.4 International legal and institutional aspects</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>12.5 Cooperation over transboundary aquifers</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>12.6 Benefits of transboundary cooperation</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Financing for sustainability</td>
<td>180</td>
</tr>
<tr>
<td>13.1 Currently available and required financing</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>13.2 Establishing permanent, structural and adequate sources of financing</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>13.3 Making better use of currently available financing</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Chapter 14</td>
<td>Conclusions</td>
<td>186</td>
</tr>
<tr>
<td>14.1 Prospects and challenges</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>14.2 Moving forward</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>14.3 Coda</td>
<td>192</td>
<td></td>
</tr>
</tbody>
</table>

References | 193 |
Abbreviations and acronyms | 225 |
Boxes

Box 1.1 Groundwater systems .. 25
Box 1.2 What is an aquifer? ... 26
Box 2.1 Defining groundwater governance ... 40
Box 2.2 Defining groundwater management ... 41
Box 2.3 Shifting from ‘volume-based’ to ‘share-based’ water abstraction rights in New South Wales (Australia) .. 44
Box 3.1 Groundwater depletion in Egypt .. 53
Box 3.2 Surface water irrigated agricultural lands with shallow water table – the case of Pakistan ... 55
Box 3.3 Energy and irrigation in Sub-Saharan Africa .. 58
Box 3.4 Groundwater and energy in India .. 58
Box 4.1 An example of successfully managed urban groundwater abstraction in Hamburg (Germany) .. 62
Box 4.2 Planned conjunctive use scheme to conserve a critical aquifer in Lima .. 64
Box 4.3 Groundwater helps survival in severe water supply crises in Chennai (India) 65
Box 4.4 Deep waterwell provides clean water for Rohingya refugees in Bangladesh 66
Box 4.5 Major groundwater dependency but with significant hazards in Lusaka .. 69
Box 5.1 Benefits of groundwater quality monitoring: The case of the AngloGold Ashanti in Cerro Vanguardia S.A. (Argentina) .. 82
Box 5.2 Coal ash dumps – the legacy of groundwater pollution .. 85
Box 5.3 Partnership between PT Multi Bintang and UNIDO ... 87
Box 6.1 Mapping groundwater-dependent ecosystems in California (USA) .. 92
Box 6.2 Groundwater, wetlands of international importance (Ramsar Sites), and UNESCO-designated sites, such as World Heritage sites, Biosphere Reserves and Geoparks .. 99
Box 6.3 Nature-based solutions to protect groundwater-dependent ecosystems .. 100
Box 7.1 Managed aquifer recharge (MAR) strategies ... 111
Box 8.1 Cape Town water supply crisis .. 120
Box 8.2 Windhoek’s Managed Artificial Recharge (MAR) scheme ... 121
Box 8.3 Quantitative and chemical status of groundwater bodies in the European Union 124
Box 8.4 Challenging transition from hydrogeological assessment to accounting for human pressures .. 125
Box 8.5 The Guarani Aquifer Agreement (GAA) ... 132
Box 8.6 Morocco aquifer contracts .. 142
Box 8.7 MAR application in Abu Dhabi .. 142
Box 10.1 Action points for the process of planning priority aquifers .. 159
Box 11.1 Groundwater withdrawal and quantity management: Well permitting and augmentation to reduce impacts (South Platte River basin, Colorado, USA) .. 166
Box 11.2 Groundwater source protection areas .. 168
Box 11.3 Stormwater harvesting for aquifer storage and recovery: Example of a MAR project, Adelaide area (Australia) .. 170
Box 12.1 International Shared Aquifer Resource Management Initiative .. 173
Box 12.2 Protection and use of the Dinaric Karst Transboundary Aquifer System (DIKTAS) 177
Box 12.3 The Stampriet Multi-Country Cooperation Mechanism: The first transboundary aquifer cooperative mechanism nested in a River Basin Organization .. 177
Box 12.4 Towards cooperation in the Senegalo-Mauritanian Aquifer Basin to promote peace and resilience among States .. 179
Box 13.1 Combining fees and tariffs to improve the management, monitoring and development of groundwater resources in Peru .. 183
Box 13.2 Combining blended finance with emerging technologies to provide safe water to rural villages in Tanzania .. 184
Box 13.3 Payment for Ecosystem Services with private sector financing: The case of Kumamoto (Japan) .. 185
Figures

Figure 1 Estimated volumes of liquid freshwater present on the different continents ...13
Figure 2 Estimated freshwater renewal on the different continents, 2015 ..14
Figure 3 Freshwater withdrawal in 2017, aggregated by continent and by water sector use (km³/year) ..15
Figure 4 Annual average monthly blue water scarcity at 30x30 arc min resolution, 1996–2005 ..16
Figure 5 The number of months per year in which blue water scarcity exceeds 1.0, 1996–2005 ...17
Figure 6 Groundwater resources of the world ...18
Figure 7 World map of known occurrences of fresh and brackish offshore groundwater ..18
Figure 8 Global hotspots of groundwater vulnerability to seawater intrusion and sea level rise ...21
Figure 9 Global hotspots of land subsidence induced by groundwater withdrawal ..22
Figure 1.1 Vertical cross-section showing aquifers, confining units and the unsaturated zone ..27
Figure 1.2 Evolution of total groundwater withdrawal in selected countries, 1950–2020 ..30
Figure 1.3 The multiple services offered by groundwater systems ..31
Figure 1.4 The Sustainable Development Goals ..33
Figure 1.5 Regional and global drinking water coverage, 2015–2020 (%) ..34
Figure 2.1 Main elements of groundwater governance and management, from policy principles to implementation approaches ...41
Figure 3.1 Estimated total groundwater withdrawal and the percentage for irrigation for selected countries in 2010..........................50
Figure 3.2 Groundwater table decline in a selection of the world’s major aquifers ..52
Figure 4.1 Schematic overview of urban water sources and their use and interaction ...63
Figure 4.2 Typical trend in the evolution of urban water supplies ..63
Figure 5.1 Self-supplied industrial water withdrawals in the USA ..74
Figure 5.2 Water use during a mining project life cycle ..79
Figure 5.3 Source and use of freshwater in the USA, 2015 ...83
Figure 5.4 Energy used for various processes in the water sector ..85
Figure 5.5 Corporate and community value drivers for water management stewardship ..87
Figure 6.1 Example of a groundwater-dependent ecosystem: An aerial view of floodplains and islands in the Okavango Delta (Botswana) ...90
Figure 6.2 Interactions between groundwater, ecosystems, human activity and nature-based solutions91
Figure 6.3 Global patterns in groundwater dependency, hotspots of regional threats, and priorities for conservation and management for aquatic and terrestrial ecosystems ...95
Figure 6.4 Connecting groundwater-dependent ecosystem types with the ecosystem services they provide96
Figure 6.5 Ecological impacts of decreasing groundwater quality and quantity ..98
Figure 7.1 Key interactions between groundwater and climate change showing how direct and indirect impacts of climate change affect groundwater systems103
Figure 7.2 Projected changes in mean annual precipitation globally under climate change ..104
Figure 7.3 Changes in monthly groundwater storage and annual precipitation in four large aquifer systems in drylands areas of the USA and Australia ..105
Figure 7.4 Impact of sea level rise (SLR) on seawater intrusion in a sloping unconfined coastal aquifer system107
Figure 7.5 Schematic diagram showing different types of geothermal energy systems, including Aquifer Thermal Energy Storage (ATES), Ground Source Heat Pump (GSPHP) and Enhanced Geothermal System (EGS) ..113
Figure 8.1 Groundwater resilience to climate change. High groundwater storage buffers against short-term changes in rainfall, and high average long-term groundwater recharge enables an aquifer to recover rapidly after drought ...117
Figure 8.2 The distribution of the main aquifer types in Africa ...118
Figure 8.3 Fresh groundwater abstracted as a percentage of total (gross) freshwater abstracted in selected countries (latest year available) ...122
Figure 8.4 Percentage of area of groundwater bodies ‘not in good chemical status’ per river basin district127
Tables

Table 1 Groundwater withdrawals in 2017, aggregated by the world's major regions ...20
Table 2 Breakdown of 2017 groundwater withdrawal by water use sector and by continent ..21
Table 3.1 Irrigated areas per region and globally, including groundwater share ...49
Table 4.1 Selected country data on urban groundwater abstraction ...61
Table 4.2 Summary of the benefits of groundwater sources to water service utilities ...61
Table 4.3 Irrigated areas per region and globally, including groundwater share ...49
Table 4.4 Drinking water service ladder with groundwater use ...68
Table 5.1 Fifteen countries with the largest estimated annual groundwater extractions, 2010 ... 75
Table 5.2 The nine countries with the largest annual industrial water withdrawal (km³/year) .. 75
Table 5.3 Water use in textile processing in the USA (in l/kg of production) .. 77
Table 5.4 Common industrial groundwater contaminants by source ... 79
Table 5.5 Groundwater impacts from active and legacy mining ... 82
Table 5.6 Water intake in thermal-electric power generation in Canada (2017), by source ... 84
Table 8.1 Some general characteristics of groundwater governance for each subregion, from a regional integration perspective (indicative only) 123
Table 8.2 Selected governance and/or management responses to groundwater challenges in each subregion (indicative only) 128
Table 9.1 An example of a hydrogeological map and a cross-section .. 147
Table 9.2 Modern piezometer with a data logger and an explanation for the public (National Park De Alde Feanen, Province of Friesland, the Netherlands) .. 148
Table 9.3 Cluster of boreholes for monitoring water levels at different depths (overburden, shallow and deep bedrock) at a site in eastern Ireland .. 149
Table 9.4 GRACE-based shallow groundwater drought indicator for the USA .. 150
Table 9.5 Selected forms of presenting groundwater data and information, in relation to envisaged users ... 152
Table 9.6 Global Groundwater Information System (GGIS) .. 154
Table 10.1 What is Policy? A model from the State of New South Wales (Australia) .. 156
Table 10.2 Institutional structure for groundwater policy development ... 157
Table 10.3 Stages and factors in the elaboration of a groundwater management plan .. 160
Table 11.1 Pollution sources that threaten groundwater quality .. 167
Table 12.1 Transboundary aquifers of the world ... 172
Table 12.2 Pumping groundwater from a well in country A can have an impact on the part of the aquifer in country B .. 173
Table 13.1 Total economic value of groundwater ... 182
The hydrological cycle teaches us that water is in constant movement. Water melts, evaporates, condensates and circulates – but it is never static. As part of this process, water seeps into soil, collecting in underground reservoirs. This groundwater is a critical natural resource, invisible but indispensable for life on our planet.

Indeed, nearly 50% of the world’s urban population depends on underground water sources. Yet more and more aquifers are being polluted, overexploited, and dried up by humans, sometimes with irreversible consequences. Moreover, many decision-makers in the water field lack a clear notion of groundwater, despite its essential role in the water cycle.

That is why UNESCO, in cooperation with UN-Water, is organizing a global summit on groundwater in December 2022. That is also why this issue will be the theme of World Water Day on 22 March. And, finally, that is why groundwater is the focus of this year’s edition of the United Nations World Water Development Report.

This report, entitled “Groundwater, making the invisible visible”, raises awareness of this abundant yet fragile resource. It provides in-depth information on groundwater availability and underlines its importance in the provision of water to humans and the environment.

Importantly, the report expands on current opportunities and imminent challenges and explores how we can use, manage and govern this resource sustainably. This means, among others, making smarter use of the potential of still sparsely developed groundwater resources, protecting groundwater against pollution and overexploitation, responding dynamically to the needs of an ever-increasing population, and responding effectively to the global climate and energy crises.

Lastly, the report highlights interlinkages between groundwater and human health, poverty alleviation and gender equality. To this end, improved knowledge and capacity development is not enough; to protect aquifers, we also need innovation, in terms of technical interventions, institutional and legal reforms, improved financing, and behavioural changes.

This remarkable publication, coordinated by UNESCO, was made possible thanks to the ongoing support provided by the Government of Italy and the Regione Umbria to UNESCO’s World Water Assessment Programme. I also wish to thank the UN Water family for contributing its knowledge and skills.

For, when it comes to groundwater, many challenges and opportunities lie ahead. UNESCO is committed to addressing these, notably through its Intergovernmental Hydrological Programme. I therefore trust that this World Water Development Report will inspire decision-makers to adopt more focused approaches to developing, managing and governing groundwater – and, in doing so, make the invisible visible.

Audrey Azoulay
Beneath our feet, out of sight, groundwater is a resource most of us rarely think about. Yet, almost all of the liquid freshwater in the world is groundwater, providing critical support to drinking water supplies, crops, industries and ecosystems.

As this report makes clear, human activities over-use and pollute groundwater in many places; and in other locations, we simply do not know how much water is down there. The mismanagement of groundwater, and its frequent abuse either by contamination or over-exploitation, is a threat to the entire water cycle – and therefore a threat to human well-being and the survival of all life.

This year’s United Nations World Water Development Report focuses upon the need to explore and protect groundwater, and shows that equitable and sustainable management of it will be central to surviving and adapting to climate change and meeting the needs of a growing population.

As ever, this publication is highly relevant both to an expert audience and to general readers seeking a better understanding of the part played by water in human societies and development. The experiences, information and analysis provided by UN-Water’s Members and Partners help us understand the many ways in which groundwater is critical to healthcare, agriculture, jobs, the environment and many other domains.

The conclusion is clear: improving the way we use and manage groundwater is an urgent priority if we are to achieve the Sustainable Development Goals by 2030.

Decision-makers must begin to take full account of the vital ways in which groundwater can help ensure the resilience of human life and activities in a future where the climate is becoming increasingly unpredictable.

The 2022 United Nations World Water Development Report is the outcome of cooperation between various United Nations entities and partner organizations from the UN-Water ‘family’. A richly diverse collection of expert professionals has produced a comprehensive yet clear and accessible analysis of this topic that identifies challenges and recommends solutions.

I am grateful to UNESCO and its World Water Assessment Programme for coordinating this edition, and to all colleagues who participated.

We must protect and use groundwater sustainably, balancing the needs of people and the planet. I am confident that this report will provide the reader with a better understanding of how to improve groundwater policies and I hope it will spur the urgent action that is sorely needed.
Every past edition of the United Nation’s World Water Development Report (WWDR) has offered a rather unique outlook on water. Some reports have focused on relatively technical subjects such as energy, wastewater, nature-based solutions or climate change. Other water-related topics covered in these reports, such as sustainable development, water and jobs, leaving no one behind, or valuing water, have been addressed primarily through socio-economic lenses. In some cases, we were able to base our work on a considerable amount of previously existing data, information, analysis and material, while in others, the knowledge base was considerably limited, compelling us to take a more creative approach in designing and drafting the report.

This latest WWDR is particularly unique: it is the first time that our report has focused on a specific element of the global water cycle – in this case, groundwater. In other words, the topic (or theme) of this year’s report is more than just an angle or perspective through which to explore the role of water across various social, economic and environmental goals and objectives, it is about the resource itself. And more importantly, it concerns a critical freshwater resource that has remained ‘under the radar’ for far too long.

As the ninth in a series of annual, thematic reports, the 2022 edition of the WWDR seeks to explore the importance of groundwater for sustainable development and shed some light on the policy and management actions that need to be taken, not only to ensure the perenniality of the resource, but also to maximize the many opportunities it offers in a rapidly changing world of rising water demand and limited, often vulnerable, freshwater resources.

As highlighted throughout the report, groundwater already plays a vital role in supporting food and energy security, urban and (especially) rural settlements, and industry. It is an essential component for many healthily functioning ecosystems and offers exceptional prospects in terms of climate change adaptation and mitigation. The report also describes potential responses to overcome the challenges that currently impede progress in the governance and management of groundwater resources, namely in terms of data gathering and dissemination, legal and political frameworks, capacity-building, and financing.

Another unique aspect of this year’s WWDR is the sheer number of authors and contributors, and the richness of on their inputs. Never before have we had such a tremendous level of support from such a broad field of recognized experts and practitioners from around the world, and we humbly believe that this is reflected in the quality and relevance of the report. We certainly made a lot of new friends – and reacquainted with several other ones – along the way! It is our sincerest hope that we will continue to foster such collaborative efforts for years to come.
Through working closely with all these contributors, we have endeavoured to produce a balanced, fact-based and neutral account of the current state of knowledge, covering the most recent developments, and highlighting the challenges and opportunities that a greater attention to groundwater can provide. Although primarily targeted at policy- and decision-makers, water resources managers, academics and the broader development community, we hope this report will also be well received by non-specialists, and those who are engaged in the alleviation of poverty and humanitarian crises, in the pursuit of the human rights to water supply and sanitation, and the advancement of the 2030 Agenda for Sustainable Development.

This latest edition of the WWDR is the result of a concerted effort between the Chapter Lead Agencies listed in the acknowledgements. The Report also benefitted to a great extent from the inputs and contributions of several other UN-Water members and partners, as well as from numerous universities, research institutions, scientific associations and NGOs who provided a wide range of relevant material.

On behalf of the WWAP Secretariat, we would like to extend our deepest appreciation to the afore-mentioned agencies, members and partners of UN-Water, and to the writers and other contributors for collectively producing this unique and authoritative report during the second year of the COVID-19 pandemic, with all the additional difficulties the situation has imposed on each and all of us. Jac van der Gun deserves specific recognition for having generously shared his knowledge, wisdom and guidance throughout the report’s publication process.

We are profoundly grateful to the Italian Government for funding the Programme and to the Regione Umbria for generously hosting the WWAP Secretariat in Villa La Colombella in Perugia. Their contributions have been instrumental to the production of the WWDR.

Our special thanks go to Ms Audrey Azoulay, Director-General of UNESCO, for her ongoing support to WWAP and the production of the WWDR, and to Mr Gilbert F. Houngbo, Chair of UN-Water and President of the International Fund for Agricultural Development.

We extend our most sincere gratitude to all our colleagues at the WWAP Secretariat, whose names are listed in the acknowledgements. The report could not have been completed without their professionalism and commitment.

Last but not least, we dedicate this report to the front-line healthcare providers and essential service workers whose tireless efforts allowed us to remain as safe as possible during the ongoing COVID-19 pandemic.

Michela Miletto
Richard Connor
WWDR 2022 Team

Director of the Publication
Michela Miletto

Editor-in-Chief
Richard Connor

Process Coordinator
Engin Koncagül

Publication Assistant
Valentina Abete

Graphic Designer
Marco Tonsini

Copy Editor
Simon Lobach

UNESCO World Water Assessment Programme (WWAP) Secretariat (2021–2022)

Coordinator: Michela Miletto

Programmes: Richard Connor, Laura Veronica Imburgia, Engin Koncagül and Laurens Thuy

Publications: Valentina Abete, Martina Favilli and Marco Tonsini

Communications: Simona Gallese

Administration and support: Barbara Bracaglia, Lucia Chiodini and Arturo Frascani

IT and Security: Michele Brenzacchi, Tommaso Brugnami and Francesco Gioffredi

Trainees and Interns: Hanouf Alyami Mahdi, Ahmed Asaad Quotah, Caterina Brazda, Giulia Cadoni, Hugo Chauvin, Arianna Fusi and Candelaria Landin Moreno
Acknowledgements

This Report is published by the United Nations Educational, Scientific and Cultural Organization (UNESCO), on behalf of UN-Water, and its production is coordinated by the UNESCO World Water Assessment Programme (WWAP). Gratitude goes to UN-Water Members and Partners and other Contributors that made the content preparation of this Report possible.

Chapter Lead Agencies

Contributors
Ask for Water GmbH on behalf of the RWSN, British Geological Survey (BGS), CDP (formerly the Carbon Disclosure Project), Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, Empresa de Transformación Agraria (TRAGSA), Environmental Law Institute, European Environment Agency (EEA), Flinders University and National Centre for Groundwater Research and Training, Global Water Partnership (GWP), IAH, International Association of Hydrological Sciences (IAHS), International Association for Water Law (AIDA), International Atomic Energy Agency (IAEA), IGRAC, IHE Delft, Institute of Environmental Assessment and Water Research Spanish National Research Council (IDAEA-CSIC), International Association for Water Law (AIDA), International Organization for Migration (IOM), International Union for Conservation of Nature (IUCN), IWMI, International Water Resources Association (IWRA), Kiwa Water Research Institute (KWR), Miami-Dade County Water and Sewer Department (WASD), Netherlands Organisation for Applied Scientific Research (TNO), NSW Department of Planning, Industry and Environment, Office of the United Nations High Commissioner for Human Rights (OHCHR), Sorbonne University and Paris School of Mines, Special Rapporteur on the human rights to safe drinking water and sanitation, Technical University of Catalonia, Technical University of Dresden (TU-Dresden), Texas A&M University School of Law, The Nature Conservancy (TNC), Trinity College Dublin, UNDP, UNECLAC, UNESCOWA, UNESCO-IHP, UNESCO World Heritage Centre (WHC), UNESCO WWAP, UNIDO, University of Arizona Water Resources Research Center, University College London Institute for Risk and Disaster Reduction (UCL-IRDR), University of Geneva, University of Kiel, University of Massachusetts, University of Strathclyde, University of Texas at Austin (UTexas-Austin), University of Tsukuba, United Nations Statistics Division (UNSD), United Nations University Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES), UNU Institute for Water, Environment and Health (UNU-INWEH), US Department of Agriculture (USDA), WaterAid, Women for Water Partnership (WfWP), World Meteorological Organization (WMO), and the World Bank.

Donors
The development of the Report was financially supported by the Government of Italy and the Regione Umbria. All who have provided in-kind contributions, and their respective donors, are gratefully acknowledged.
The purpose of this edition of the United Nations World Water Development Report (WWDR 2022) is to shine a spotlight on groundwater, calling attention to its specific roles, challenges and opportunities in the context of water resources development, management and governance across the world.

Groundwater – accounting for approximately 99% of all liquid freshwater on Earth and distributed over the entire globe, albeit unequally – has the potential to provide societies with tremendous social, economic and environmental benefits, including climate change adaptation. Groundwater already provides half of the volume of water withdrawn for domestic use by the global population, and around 25% of all water withdrawn for irrigation, serving 38% of the world’s irrigated land. Yet, despite its enormous importance, this natural resource is often poorly understood, and consequently undervalued, mismanaged and even abused. In the context of growing water scarcity in many parts of the world, the vast potential of groundwater and the need to manage it carefully can no longer be overlooked.

The multiple services offered by groundwater

The capacity of groundwater systems to offer various services depends on their geographically varying properties and is dynamically influenced by ongoing natural and human processes.

These services include:

• **provisioning services**, which allow groundwater to be withdrawn for (human) water use purposes;
• **regulatory services**, which reflect the buffer capacity of aquifers to regulate the groundwater systems’ quantity and quality regimes;
• **supporting services** on which groundwater-dependent ecosystems (GDEs) and other groundwater-related environmental features rely; and
• **cultural services** linked to leisure activities, tradition, religion or spiritual values, which are associated with particular sites rather than with aquifers.

Groundwater offers a number of additional opportunities, such as expanding geothermal energy generation, enhancing storage for improved water security, and adapting to the impacts of climate change.

The challenges

Groundwater storage depletion occurs when discharge exceeds recharge. Although climate variability and climate change can play a role, most cases of long-term groundwater storage depletion result from intensive abstraction. The rate of global aggregated groundwater storage depletion is considerable: for the beginning of the present century, the estimates are mostly between 100 and 200 km³/year (accounting for roughly 15 to 25% of total groundwater withdrawals).

Groundwater pollution reduces the suitability of abstracted groundwater for drinking purposes and also affects groundwater-dependent ecosystems.

There are many sources of anthropogenic groundwater pollution: most of them are located at or near the land surface, but several other sources inject pollutants into the subsurface at greater depth below the surface. Agricultural pollution is widespread, it is a diffuse source that often includes large quantities of nitrate, pesticides and other agrochemicals. Groundwater pollution is a virtually irreversible process: once polluted, aquifer zones tend to remain with polluted water.
Groundwater governance

Groundwater governance processes enable groundwater management, planning and policy implementation. It takes place at multiple scales and geographic levels, including regional and transboundary scales. Groundwater management is action-oriented, focusing on practical implementation activities and day-to-day operations. It occurs more often at the micro- and meso-level.

Because groundwater is often perceived as a private resource (that is, closely connected to land ownership, and in some jurisdictions treated as privately owned), regulation and top-down governance and management are difficult. Governments need to fully assume their role as resource custodians in view of the common-good aspects of groundwater.

Domestic laws and regulations regulate access to groundwater as well as human activities that impact the quality of groundwater. Additional relevant legal instruments include those that: provide access to water for basic needs as a matter of human rights; afford access to groundwater for livelihoods and small-scale productive uses; regulate land uses inimical to the natural groundwater recharge and discharge processes; and regulate the formation and functioning of associations of groundwater users for allocation, monitoring and policing responsibilities. Legal frameworks also need to include protection of discharge and recharge zones and of the area surrounding water supply wells, as well as sustainable yield norms and abstraction controls, and conjunctive use regulations.

In some jurisdictions, groundwater is regulated in conjunction with surface water, including rivers. In instances where there are conflicts between groundwater rights and surface water rights (for instance in the case of a stream that is drying up due to intense groundwater pumping nearby, and vice versa), a conjunctive management approach is warranted.

Point sources of pollution can be regulated through permits as well as through general effluent and/or ambient water quality standards. Non-point source pollution from diffuse or indistinct sources requires prevention measures: regulation of land uses and/or imposition of best agricultural and environmental practices.

Agriculture

Groundwater is a critical resource for irrigated agriculture, livestock farming and other agricultural activities, including food processing. In order to meet global water and agricultural demands by 2050, including an estimated 50% increase in food, feed and biofuel demand relative to 2012 levels, it is of critical importance to increase agricultural productivity through the sustainable intensification of groundwater abstraction, while decreasing the water and environmental footprints of agricultural production.

Where a perennial and reliable source of shallow groundwater exists, groundwater can be an important source for smallholder farmers. Regions heavily reliant on groundwater for irrigation include North America and South Asia, where 59% and 57% of the areas equipped for irrigation use groundwater, respectively. In Sub-Saharan Africa, where the opportunities offered by the vast shallow aquifers remain largely underexploited, only 5% of the area equipped for irrigation uses groundwater.

It is estimated that agricultural pollution has overtaken contamination from settlements and industries as the major factor in the degradation of inland and coastal waters. Nitrate, from chemical and organic fertilizers, is the most prevalent anthropogenic contaminant in groundwater globally. Insecticides, herbicides and fungicides, when improperly applied or disposed of, can pollute groundwater with carcinogens and other toxic substances.
Evidence suggests that laws and regulations to prevent or limit diffuse groundwater pollution from agriculture, and especially their enforcement, are generally weak. Policies addressing water pollution in agriculture should be part of an overarching agriculture and water policy framework at the national, river basin and aquifer scale.

Rural electrification has been a principal driver for groundwater development, especially where rural power grids have been extended into areas that would otherwise have relied on diesel fuel or wind energy. Advances in solar technology have witnessed the development of Solar-Powered Irrigation Systems (SPIS), adopted at scale to service farming operations. However, there is a risk of unsustainable water use if SPIS implementation is not adequately managed and regulated.

Human settlements

The groundwater dependence of innumerable cities appears to be intensifying, such that nearly 50% of the global urban population today is estimated to be supplied from groundwater sources. However, many urban poor live in peri-urban settlements, which are unplanned and lack legal status, and where public water infrastructure and services are not provided.

In developing economies, the use of private waterwells for urban self-supply has proliferated in recent years. The practice usually commences as a coping strategy in the face of irregular or inadequate piped water supply, and then continues in perpetuity as a cost reduction strategy to avoid paying higher water tariffs.

The impact of inadequate or inappropriate sanitation on groundwater is observed in urban areas where main-sewer coverage is low and most domestic faecal waste is discharged into pit latrines. Water utilities need to put a much more consistent emphasis on protecting their critical waterwell/springhead sources through restricting agricultural cropping and housing development in their groundwater capture zones, in the interest of safeguarding public health and reducing the cost of water supply.

Groundwater provides the only feasible and affordable way to extend basic water access to unserved rural populations in much of the world.

The coexistence of on-site sanitation and groundwater supply is a serious concern for shallow sources. Persistent contamination of rural groundwater supplies with pathogens is estimated to affect about 30% of the total installations. It will usually impact the marginalized the most (women and girls are often disproportionately more at risk of disease due to pathogens and toxins as a result of their exposure to wastewater).

The settlements, both temporary and permanent, of displaced people require special mention. These settlements often have a high population density but fall between the urban and rural categories. The construction of well-designed waterwells, in conjunction with appropriately cited and well-maintained sanitation systems, is vital in these cases.

Industry

Industries that withdraw groundwater include manufacturing, mining, oil and gas, power generation, engineering, and construction. Industries with a high groundwater dependency via supply chains include the apparel and food and beverage sectors. Various industrial processes make use of groundwater resources, in locations where surface water availability is limited in quantity, but also in situations where quality is important.
The discharge and infiltration into the ground of untreated or only partly treated industrial effluents can pollute groundwater. Human health and the environment can also be put at significant risk as a result of soil contamination and leaching from non-engineered and old industrial dumpsites and legacy mines.

Many production processes need a large amount of water for washing and cleaning their products at the end of production, to separate residues of processing chemicals. The use of groundwater for cooling purposes is very dependent on the location and type of industry and will therefore vary widely from country to country. Underground construction, such as tunnels, frequently require either temporary or permanent dewatering.

Mines in many cases require frequent or continuous dewatering in order to operate, and there is the risk of contaminating a local aquifer, which may be a source of drinking water. The disposal of the water also presents challenges for treatment if it is contaminated by the mining activities. However, the oil, gas and mining industries, through their various activities, may have ample in-house data on the location and extent of aquifers and their properties. Such data could be very useful to hydrogeologists, governments and water supply utilities.

The energy sector can also have profound effects on groundwater quality. Coal used in the generation of thermal electricity can significantly impact groundwater quality as a result of leaching through coal ash waste dumps. Fracking for natural gas, particularly in shallow aquifers, can also present considerable risks of groundwater contamination. Pollution sources include wastewater from formation water, flow-back water, and drilling and fracturing liquids.

The financial sector is now exerting its considerable influence over sustainable investing and this will have a knock-on effect, favouring clients in industry and energy who use groundwater sustainably, and encouraging others to do so.

Ecosystems

Groundwater-dependent ecosystems (GDEs) can be found across a variety of landscapes, ranging from high mountain valleys to the bottom of the ocean and even deserts.

Groundwater discharge supports the baseflows of streams and rivers, a crucial water source that determines their risk of falling dry during periods of drought. Terrestrial ecosystems depend on groundwater in all biomes around the world where it is accessible to plants. Water holes in arid environments are often purely groundwater-fed, and thus groundwater is crucial to sustaining the complex food webs of arid landscapes, such as savannahs. Riparian zones, wetlands and other surface water bodies often depend on groundwater.

GDEs also support critical ecosystem services. Aquatic and terrestrial GDEs provide habitat, support biodiversity, buffer floods and droughts, provide food, and offer cultural services. GDEs play critical roles in protecting aquifers from contamination by ensuring physical separation, by enabling biophysical processes like filtration, biodegradation and sorption of contaminants, and by facilitating and protecting natural recharge.

The shared well-being of groundwater, ecosystems and humans may be enhanced by groundwater management, conjunctive water and land management, nature-based solutions, and improved ecosystem protection. While groundwater management often focuses on groundwater or aquifers themselves, groundwater and ecosystems need to be managed together in order to ensure the continued provision of critical ecosystem services.
Climate change

Climate change directly impacts the natural recharge of groundwater through its influence on precipitation and on leakage from surface waters, including ephemeral streams, wetlands and lakes. Substantial uncertainty persists, however, in global projections of the magnitude of the impacts of climate change on groundwater recharge.

One observed and widespread impact of climate change influencing groundwater replenishment is the intensification of precipitation. In areas with inadequate sanitation provision, heavy rainfall events can flush faecal microbial pathogens and chemicals through shallow soils to the water table.

Global sea level rise (SLR) has induced seawater intrusion into coastal aquifers around the world. However, the impact of SLR alone on seawater intrusion is often small relative to that of groundwater abstraction. The impacts of climate change on groundwater may be greatest through its indirect effects on irrigation water demand via increased evapotranspiration.

Developing water supplies that are resilient to climate change will, in many parts of the world, involve the use of groundwater conjunctively with rivers, lakes and other surface water reservoirs. Groundwater-based adaptations to climate change exploit distributed groundwater storage and the capacity of aquifer systems to store seasonal or episodic water surpluses. They incur substantially lower evaporative losses than conventional infrastructure, such as surface dams.

The development of geothermal energy, a sustainable energy source, plays an important role in reducing CO₂ emissions. Deep aquifers can also be used for carbon capture and sequestration, the process of storing carbon to curb accumulation of carbon dioxide in the atmosphere.

Regional perspectives

Sub-Saharan Africa

Africa possesses large groundwater resources. While not all of this groundwater storage is available for abstraction, the volume is estimated to be more than 100 times that of the annual renewal of the region’s freshwater resources. The development of groundwater has great potential to satisfy the need for rapidly increasing water supply across Sub-Saharan Africa, both for human survival as well as to promote economic development. About 400 million people in Sub-Saharan Africa still do not have access to even basic water services.

Most countries in Western and Central Africa have little groundwater storage but high annual rainfall and therefore regular recharge. Conversely, many countries in Eastern and Southern Africa have considerable groundwater storage despite very low levels of recharge. This storage provides a significant buffer before abstraction will impact the regional groundwater system. However, current groundwater pumping will ultimately be at the expense of future generations.

Only 3% of the total cultivated land in Sub-Saharan Africa is under irrigation, and only 5% of that is irrigated with groundwater. The development of groundwater could act as a catalyst for economic growth by increasing the extent of irrigated areas and therefore improving agricultural yields and crop diversity. The further development of groundwater in Sub-Saharan Africa is not currently limited by a lack of groundwater, but rather by a lack of investment, most notably in infrastructure, institutions, trained professionals and knowledge of the resource.
Europe and North America

The characteristics of groundwater resources and their availability vary between and within pan-Europe and North America, reflecting the differences in geology and hydrology. The share that groundwater makes up of the total withdrawal of freshwater also varies greatly from one country to another.

In many countries of Europe, groundwater is principally used for drinking water, which underscores the need to control water quality, given the potential health risks. The pollutants that most commonly cause poor chemical status in the European Union are nitrates as well as pesticides. While pollutants from agriculture dominate, industrial chemicals and substances related to mining also lead to chemical groundwater pollution in several river basin districts. More information is needed concerning such ‘new’ (or ‘emerging’) pollutants.

In addition to the need for collaboration among different water users within a given country, there is an increasing awareness of the transboundary nature of many groundwater resources, and, therefore, of the need for interjurisdictional cooperation.

Groundwater monitoring and expertise is commonly held by specialized institutions, while the implementation of water policy instruments calls for cooperation between institutions. Indeed, many pressures and drivers are the same for ground- and surface water. Integrated policies and efforts to ensure coherence are being developed.

Latin America and the Caribbean

Due to the relative abundance of surface water and the limited level of groundwater use, less than 30% of the freshwater abstracted in Latin America and the Caribbean comes from groundwater sources. In the countries that do rely on groundwater, approximately half of the extraction is used for irrigation, a third is for domestic use and the rest is for industrial use.

Throughout the region, there are shortcomings in the protection and monitoring of groundwater, giving way to its intensive exploitation and/or contamination, ultimately endangering its sustainability as well as its accessibility to the most vulnerable populations, who depend on these groundwater sources for their drinking water supply.

Groundwater plays an important role in the water supply systems of most Latin American cities, even though not always as the main source of supply. It also represents 50% of the water used by the industrial sector. In the Caribbean, where surface water tends to be relatively scarce, groundwater represents about 50% of the water abstracted.

As the importance of aquifers for the region’s ecosystems, social development and economic activities will only further increase in the near future, the region needs to move towards political processes that harmonize decision-making, monitoring and groundwater management both nationally and internationally.

Asia and the Pacific

The Asia-Pacific region is the largest groundwater abstractor in the world, containing seven out of the ten countries that extract most groundwater (Bangladesh, China, India, Indonesia, Iran, Pakistan and Turkey). These countries alone account for roughly 60% of the world’s total groundwater withdrawal.

These socio-economic benefits of groundwater use are particularly crucial for the agricultural sector. The industrial and municipal sectors are also important users. While groundwater is abundant across most of the region, its depletion has led to concerns over the sustainability of groundwater usage in different areas across Central Asia, China, South Asia and certain urban centres in Southeast Asia.

Most groundwater resources in the Arab region are non-renewable, and must be managed with a view to the fact that they are a finite resource.
Groundwater contamination from both anthropogenic and geogenic processes is an additional concern. The impacts of climate change on precipitation variability further exacerbate pressure on groundwater resources, particularly in areas with semi-arid to arid climates and on Small Island Developing States.

While management practices and institutional, legal and regulatory systems to address groundwater issues exist throughout the region, groundwater governance is challenging due to the unrestricted access regime in place in many countries. Improved groundwater governance, with popular support and enforcement capacity, is critically needed.

The Arab region
The Arab region is one of the most water-scarce in the world and groundwater is the most relied-upon water source in at least 11 of the 22 Arab states. Over-extraction of groundwater in many parts of the region has led to groundwater table declines, especially in highly populated and agricultural areas. This is particularly alarming as groundwater is the primary source of water for vulnerable groups that are not formally connected or do not have access to public sources. Unsustainable agricultural practices, as well as industries and urbanization, are significantly impacting groundwater quality.

Most groundwater resources in the Arab region are non-renewable, and must be managed with a view to the fact that they are a finite resource. However, monitoring groundwater extraction remains difficult, despite the emergence of new technologies. This complicates the management of groundwater, particularly in a transboundary context. Unfortunately, only very few cases of groundwater cooperation exist in the region.

The importance of groundwater for the region’s water security under a changing climate demands improved governance through policies and legislations, innovative management approaches, enhanced use of technologies, dedicated funding for better understanding of the resource, and heightened regional cooperation.

Building and updating the knowledge base
The UN Summary Progress Update 2021 on SDG 6 raises the issue of the lack of groundwater data and groundwater monitoring initiatives, emphasizing that groundwater monitoring is a ‘neglected area’.

Groundwater needs to be monitored over time in terms of quantity and quality, in order to learn about the behaviour and state of aquifers, and to identify possible negative changes such as over-abstraction, reduced recharge (including climate change effects) and pollution. Groundwater recharge is usually estimated rather than directly measured. Highly vulnerable aquifers that provide services to people and the environment need to be monitored more frequently.

Scientific knowledge in hydrogeology and the methods and tools available are sufficient to address most groundwater management issues. The challenge lies more with the scarcity of reliable data for area-specific groundwater assessments and scenario analyses. Since all aquifers and their boundary conditions are unique, it is crucial to have groundwater assessments at field level to enable informed policies and management of groundwater resources.

Although often relatively expensive, monitoring is a wise investment: identifying problems at an early stage can be highly cost-effective, allowing mitigation measures to be introduced before serious deterioration of the resource takes place. Conventional monitoring programmes can be augmented by citizen science initiatives, which can also promote the integration of local knowledge into hydrogeological characterization and groundwater system assessments. Remote sensing techniques have also been used by the scientific community to improve monitoring and estimation of groundwater resources.
The sharing of data and information is often deficient, especially in low-income countries. Groundwater data collected with public funds should be freely accessible. Private companies should disclose relevant data and information concerning subsurface water-related parameters that would improve the assessment and management of groundwater. For example, geophysical and borehole data acquired during oil and gas exploration could improve knowledge of aquifer extent and parameters.

In many low- and middle-income countries, hydrogeological capacity is missing, even when groundwater makes up the largest part of their managed water resources. This often comprises both technical and institutional capacity.

Policy and planning

All too often, the adoption of a groundwater policy is primarily focused on the utilization of groundwater after abstraction. This is far removed from sound management of the aquifer, which requires attention to land use, replenishment, protection, and implementation of measures that aim at preserving groundwater system services and functions.

Any national ‘groundwater management vision’ needs to be embedded within a national vision for water resources, in dialogue with actors ranging from local groundwater users and technicians to scientists, policy-makers and investors. Groundwater policy should be contingent on the legal status and nature of ownership of groundwater (public or private), as well as on factors like the water users, the interrelated surface water features, and the land uses in aquifer recharge areas. It also should provide for integrated decision-making for groundwater resources and aquifer systems, and connect to other sectors and domains of society beyond the water sector – such as socio-economic development, gender equality and poverty alleviation, food and energy, ecosystems, climate change, and human health.

Policies, strategies and plans should be tailored to the local context, based on the priorities and aspirations of the local population, and informed by sound scientific evidence. Plans can be prepared as a cooperative effort between national ministries, provincial and local agencies, and other relevant stakeholders, based on dialogue and inclusive technical support (e.g. participatory mapping) to enable co-ownership of the process and the outcome. The process produces a formal document that can be validated, with time-bound actions and indicators that can be monitored, and outputs and impacts/outcomes that can be evaluated.

Groundwater management

Groundwater management aims to control groundwater abstraction and quality as well as to address the effects of groundwater abstraction on ecosystems, surface waters, land subsidence and more. Perhaps one of the most critical components of groundwater management is control of the location and quantity of water withdrawals from the aquifer.

Deployment of several groundwater management tools is contingent upon first having the legal and institutional structures in place that grant authority for their use and enforcement. However, not all management occurs through government. Communities and/or groundwater users themselves may independently choose to manage well siting and groundwater abstractions.

The most sustainable and cost-effective approach to managing groundwater quality is to ensure its adequate protection, thus avoiding contamination. This can be achieved through vulnerability mapping, development of groundwater protection zones and land use planning.

Particular attention should be given to the conjunctive management of surface water and groundwater resources and to the potential for ‘nature-based’ solutions. Integration with environmental management, land use management, and management of space and resources of the subsurface are all important issues within the purview of integrated management.
Managed aquifer recharge (MAR) is an integrated approach that allows replenishment of aquifers to complement storage dams and provides a cost-effective alternative that minimizes evaporation and environmental impacts. MAR can also be used to retain unharvested urban stormwater and recycled water, to be made available for productive use when needed. At the watershed scale, MAR can be used to maintain environmental water flows and their availability, creating lags in water discharges to a stream. The application of MAR has increased by a factor of 10 over the last 60 years, but there is still ample scope for further expansion, from the current 10 km³/year to probably around 100 km³/year.

Transboundary aquifers

Transboundary aquifers include a natural subsurface path of groundwater flow crossing an international boundary. Actions on the aquifer in one country, such as heavy abstraction or contamination, can have a significant impact on the other side of the border.

Transboundary aquifer management often suffers from a lack of institutional will and insufficient resources to collect the necessary information, especially at the local level. Coordinating, harmonizing and sharing data represents the first step in cooperation between neighbouring countries. These actions are essential to reaching an agreement about a reliable conceptual model of the aquifer, which in turn is a prerequisite for the formulation of management plans. The integration of gender considerations into transboundary cooperation generates opportunities for more socially equitable groundwater management.

International water law was initially developed for surface waters, but ever more frequently, transboundary aquifers are made part of broader water cooperation agreements developed for transboundary river basins. This illustrates the growing awareness of the importance of transboundary aquifers.

Scientific cooperation initiatives, in the framework of technical projects on transboundary aquifers, exist around the world. Such initiatives can have various scopes, some of them aiming at joint scientific assessment, while some others tackle the management of specific issues. In these cases, the role of regional and international organizations and donors can be critical, particularly when the countries concerned are not on a par as regards to capacity, knowledge and information, or when confidence is lacking.

Financing

In contrast with surface water, where capital costs tend to be covered by the public sector, groundwater development infrastructure is usually financed by the end user, be it an industry, a household, a farmer, or a community. Users access the resource directly and in a decentralized way. The end users invest their private capital for the cost of accessing groundwater, which usually consists of a fixed cost for a well and a variable cost for pumping. In some countries, there may be an abstraction fee or a groundwater tariff, but these fees and tariffs rarely reflect the true costs and value of the resource.

Governments need to assess and accept their potential role in promoting the sustainability of groundwater resources in accordance with the local conditions, and use the limited financial resources more efficiently through tailored initiatives. Government budgets should, at minimum, fund groundwater monitoring – quality and quantity, and related operating and maintenance costs – and leverage private investment by funding initial exploratory and management initiatives.

There is an opportunity to better integrate sustainable groundwater development and management as part of other water sector projects and initiatives. For example, groundwater storage and abstraction can be included as part of urban water supply in order to add security...
and flexibility in case of seasonal resource variation. This would allow to further leverage existing funding from official development assistance, from water supply and sanitation tariffs, and even from public–private partnerships. Fees and taxes in other sectors, such as in agriculture, can also help finance groundwater initiatives and reduce potential negative externalities.

In many countries, publicly funded activities in other sectors contribute to the depletion or pollution of groundwater resources. For example, subsidies in the energy sector that incentivize the over-extraction of groundwater by reducing electricity charges, or farm subsidies that encourage crops with high water demands, can become perverse incentives. Reforming harmful subsidies and aligning them with groundwater policies should be part of the water financing agenda.

Moving forward

The General Assembly of the United Nations (UN), as well as the Human Rights Council, recognize that equitable access to safe and clean drinking water and sanitation are distinct human rights. UN Member States are expected to realize the human rights to safe drinking water and sanitation through action plans or strategies, and – since groundwater is an essential component of water supply and sanitation – to groundwater protection and aquifer recharge.

It is essential that countries commit themselves to developing an adequate and effective framework for groundwater governance. This requires that governments take the lead and assume responsibility to set up and maintain a fully operational governance structure, including: the knowledge base; institutional capacity; laws, regulations and their enforcement; policy and planning; stakeholder participation; and appropriate financing. It is also incumbent upon countries to ensure that their policies and plans are fully implemented (groundwater management). It is imperative that governments assume their role as resource custodians in view of the common-good aspects of groundwater and ensure that access to (and profit from) groundwater is distributed equitably and that the resource remains available for future generations.

Coda

The Earth’s total groundwater resources represent an enormous supply of freshwater. In a world of ever-growing water demand, where surface water resources are often scarce and increasingly stressed, the value of groundwater is poised to become progressively recognized by everyone, as a resource that has allowed human societies to flourish since millennia.

However, in spite of its overall abundance, groundwater remains vulnerable to overexploitation and pollution, both of which can have devastating effects on the resource and its availability. Unlocking the full potential of groundwater will require strong and concerted efforts to manage and use it sustainably. And it all starts by making the invisible visible.
State of groundwater resources
As a prelude to the World Water Development Report 2022, this Prologue presents aggregated statistics, figures and other information on selected overall characteristics and the state of the world’s water resources, as well as on observed trends. The numerical information aggregated at global, continental or regional scales is based on countless uncoordinated observations on variables that are difficult to assess, while documentation on their processing is usually lacking. Therefore, this information is unavoidably subject to significant uncertainty, even to the extent that different versions of the same variable are circulating. Despite these uncertainties, it is believed that the presented information will facilitate the understanding of the macroscopic setting and context of the groundwater themes discussed across the different chapters of the report, provided that the mentioned flaws are properly taken into account.

Water is the most abundant liquid on Earth, but most of it is saline. Over the years, several scientists have published estimates of the global volume of freshwater. Shiklomanov and Rodda (2003) highlight the estimate by Garmonov published in Korzun (1974), according to which the global volume of liquid freshwater (less than 1% of all water on Earth in liquid, frozen or vapour form) is estimated to be 10.6 million km³, which is equivalent to a layer of water of 79 m (equivalent depth) over the entire land area of the globe, excluding Antarctica. Approximately 99% of this volume consists of groundwater, and only 1.4 million km³ of stored groundwater is 'modern', which means it entered the subsurface less than 50 years ago (Gleeson et al., 2016). More recent estimates of the global volume of freshwater include those of Kotwicki (2009): 11.1 million km³, and by Ferguson et al. (2021): 15.9 million km³ (only the fresh groundwater component). All estimates are partly based on rather arbitrary assumptions, therefore it is not possible to decide which estimate is the most realistic one. Evidently, these estimates are subject to a large margin of uncertainty.

The freshwater volume is irregularly distributed over the continents, which is partly explained by differences in the size of the continents, partly by differences in the mean volume of freshwater per unit of area. A breakdown by Korzun (1974), based on Garmonov’s estimate, is shown in Figure 1. At the scale of countries and smaller territories, the spatial variation in equivalent water depth is much more pronounced, with values ranging from zero to almost two thousand metres.

Variations of freshwater volumes over time, such as those caused by seasonal climatic variation, climate change and intensive exploitation, have during the time span of a human life no noticeable effect on the volumes shown in Figure 1. However, the same variations may, within the same time-frame, have drastic impacts on local or regional scales. Examples are: (a) shrinking lakes such as Lake Chad, the Aral Sea, Lake Urmia, the Great Salt Lake and Lake Poopó (Wurtsbaugh et al., 2017); (b) the disappearance of numerous springs around the world; declining flows in rivers like the Yellow River, the Ganges, Rio Grande, Congo and Murray-Darling rivers (Shi et al., 2019); and (c) steadily falling groundwater levels in intensively exploited aquifer systems, including the Ganges-Brahmaputra basin, the North China Plain and the Central Valley in California (Shamsudduha and Taylor, 2020).

The rate of renewal defines the theoretical upper limit of sustainable water withdrawal. Freshwater renewal (essentially the water in the terrestrial part of the water cycle that is kept in motion), replaces volumes discharged from streams, soils and aquifers, and enables humans to withdraw water sustainably. Like freshwater volumes, the rates of freshwater renewal are also subject to considerable spatial variation. Even when aggregated to the level of continents, they show marked differences (Figure 2).
Obviously, the differences in the share of each continent in the global volume of freshwater renewal (mean value: 37,000 km³/year) are partly caused by variations in the size of the continents, but there are also significant differences in the rate of renewal per unit of area (water depth in mm per year). Average freshwater renewal depths for the comparatively wet continents South America and Europe are four to seven times higher than those for Asia, Africa, and Australia & Oceania, continents that each include vast arid and semi-arid territories. According to the data presented by Ritchie and Roser (2017), the mean annual freshwater renewal averaged over the total global land surface (excluding Antarctica) equals a water depth of 274 mm – only 0.35% of the average depth of stored freshwater, which implies a mean residence time of almost three hundred years. Africa and Asia have the lowest per capita freshwater renewal rates.
Figure 2
Estimated freshwater renewal on the different continents, 2015

Source: Ritchie and Roser (2017), based on data from Aquastat.
Freshwater withdrawal from streams, lakes, aquifers and human-made reservoirs (so-called ‘blue water’ sources) has increased strongly during the last century, and is still increasing in most parts of the world. Global freshwater withdrawal was probably around 600 km³/year in 1900 and increased to 3,880 km³/year in 2017, according to recent estimates (United Nations, 2021; Aquastat, n.d.). The rate of increase was especially high (around 3% per year) during the period 1950–1980, partly due to a higher population growth rate, and partly to rapidly increasing groundwater development, particularly for irrigation. The rate of increase is nowadays approximately 1% per year, in tune with the current population growth rate.

As shown in Figure 3, Asia has the largest share in global freshwater withdrawal (64.5%). It is followed by North America (15.5%), Europe (7.1%), Africa (6.7%), South America (5.4%) and Australia & Oceania (0.7%).

Comparison with the renewal estimates (Figure 2) shows that at the global scale the freshwater withdrawal rate has reached 10.5% of the mean annual freshwater renewal rate. These percentages vary significantly between the continents: high for Asia (41.3%), low for South America (1.7%) and Australia & Oceania (2.9%), with in-between values in Africa (6.6%), North America (8.8%) and Europe (4.2%).

While the rate of increase in freshwater use has levelled off in most developed countries, it continues to grow in the majority of the emerging economies, as well as in middle- and lower-income countries. Globally, water use is expected to grow by roughly 1% per year over the next 30 years, driven by increasing demand in the industry and energy sectors as well as by municipal and domestic uses, mainly as a function of industrial development and improving water and sanitation service coverage, in combination with population growth, economic development and shifting consumption patterns (United Nations, 2021).
Withdrawal as a percentage of renewal is an often-used water stress indicator, but when applied to large aggregated areas and to mean annual data, it is rather ineffective for detecting zones that experience water stress. The indicator becomes more meaningful when used with a higher spatial resolution and taking into account seasonal variation, but it still has some flaws, notably as environmental flows and return flows of the non-consumed fraction of withdrawn water are ignored, while it often remains uncertain how the indicator scores need to be interpreted.

These shortcomings have been addressed in the blue water scarcity indicator, introduced by Mekonnen and Hoekstra (2016). This indicator is defined as the blue water footprint divided by blue water availability. Blue water footprint refers to ‘blue water consumption’ or ‘net water withdrawal’ and is equal to the volume of ‘blue water’ (= fresh surface water and groundwater combined) that is withdrawn and not returned to groundwater or surface water systems because the water evaporated or was incorporated into a product. Blue water availability over a given area is calculated as the sum of runoff generated in that area and received from upstream, minus the environmental flow requirements of all contributing areas, and minus the water footprint in all upstream contributing areas. Figure 4 shows the simulated annually averaged global pattern of blue water scarcity, while Figure 5 (based on simulations per calendar month) indicates the number of months per year in which blue water scarcity exceeds 1.0, indicating an unsustainable rate of withdrawal. An estimated four billion people live in areas that suffer from severe physical water scarcity for at least one month per year (Mekonnen and Hoekstra, 2016). Typical responses for areas where annual scarcity values exceed 1.0 include water transfers from neighbouring water-surplus areas (if available), or depleting stored water volumes of lakes, surface water reservoirs, and – above all – aquifers.
Large volumes of fresh groundwater are present below ground surface and distributed over the entire globe, but their abundance and the conditions for their withdrawal are subject to considerable spatial variation. In order to be productive, wells have to extend into geological formations that are characterized by comparatively high porosity and permeability (so-called ‘aquifers’, see Chapter 1), and filled with fresh groundwater. Hydrogeological maps show the patterns and boundaries of zones where such favourable formations are encountered (aquifers), alternating with zones dominated by formations that are unable to yield significant quantities of water to wells. The suitability of a certain location or zone for groundwater withdrawal depends furthermore on the rate of replenishment of the tapped aquifer (groundwater recharge) and on water quality. Recharge enables groundwater to be abstracted sustainably; if it is absent or minimal, then groundwater abstraction depletes the stored groundwater volume.

Figure 6 shows a simplified hydrogeological map at the global scale. It shows major groundwater basins (blue colour) on all continents, part of them endowed with high to medium recharge rates, other ones (in arid and permafrost zones) not or only poorly recharged. These major groundwater basins contain the lion’s share of all fresh groundwater stored on Earth and they present in general the most favourable conditions for groundwater abstraction. Areas with a complex hydrogeological structure (green colour) contain thick sequences of formations that also transmit significant quantities of groundwater (often stored and flowing in fissures rather than in pores), but their productivity tends to be less than that of the major groundwater basins, on average. The third main mapping unit (brown colour) represents the less favourable areas for groundwater development, but it should be noted that this is only a macroscopic characterization, not appropriate for local-scale assessments. Besides non-productive zones, this unit includes numerous relatively small and/or shallow aquifers that may be of enormous local or regional importance. For local projects, local-scale hydrogeological maps should be consulted.

Fresh and brackish groundwater does not only occur in the underground of continents and islands: it is also present offshore. Figure 7 shows the results of a recent inventory of such occurrences. Minor parts of these offshore fresh or brackish groundwater bodies may receive some contemporaneous recharge (by lateral inflow from a connected on-land groundwater system), but most of them are non-renewable resources. The feasibility and attractiveness of exploiting these offshore fresh and brackish water bodies for water supply in the future still has to be explored.
Figure 6 Groundwater resources of the world

Figure 7 World map of known occurrences of fresh and brackish offshore groundwater

Source: Based on Post et al. (2013, fig. 1, p. 72).
In response to quickly increasing water demands and catalysed by technical, scientific and economic progress, groundwater withdrawal has boomed during the 20th century in most countries of the world, reaching unprecedented levels at the beginning of the present century. Table 1 presents estimates of groundwater withdrawals during 2017, aggregated by region and by continent. According to this table, the total global groundwater withdrawal in 2017 was 959 km³, unevenly distributed across the globe. It catches the eye that two-thirds of this quantity was withdrawn in Asia, with prominent shares in South and East Asia. North America is second in ranking by continent, with a share of 16% of the global groundwater withdrawal. Indeed, eight of the ten countries with the highest shares in global groundwater withdrawal (accounting for 75% of the total) are located in Asia (in descending order: India, China, Pakistan, Iran, Indonesia, Bangladesh, Saudi Arabia and Turkey), and two in North America (the United States of America (USA) and Mexico) (see Table 5.1). In spite of the fact that Africa accounts for about 17% of the global population (1.4 billion), its groundwater withdrawal is comparatively low, accounting for slightly less than 5% of the global total. Australia & Oceania, with its low population size, also has a very low share in global groundwater withdrawal.

Comparison with estimates previously made for 2010 (Margat and Van der Gun, 2013) shows that the total global withdrawal rate has not significantly changed between 2010 and 2017. Nevertheless, at the regional level, percentages of change vary considerably. Although these percentages look rather pronounced for some of the regions, they do not yet allow to draw firm conclusions on trends, since the calculated differences may be caused by interannual climatic variation or even by inconsistencies in reporting by national agencies. After inspection of time series of annual records, it appears that groundwater withdrawal rates in most European countries have stabilized, or are even slightly declining. The same seems to be the case in Northern North America (i.e. Canada, USA and Greenland) and in South and East Asia. Apparently, groundwater withdrawal in the corresponding countries has reached intensities beyond which expanding is no longer desirable or feasible.

Table 1 shows also that, at the global level, groundwater withdrawal currently corresponds to 25% of the total freshwater withdrawal. The percentages vary between the continents: low for South America, a large part of which is endowed with abundant permanent surface water resources, and high for Australia & Oceania, where such surface water resources are scarce.

A breakdown of groundwater withdrawal by water use sector is presented in Table 2. It shows that 69% of the total volume is abstracted for use in the agricultural sector, 22% for domestic uses, and 9% for industrial purposes. These percentages vary between the continents. The Chapters 3, 4 and 5 of this report provide more information on the different human uses of groundwater, while Chapter 6 addresses in-situ groundwater services in support of ecosystems.

Obviously, the absence of productive aquifers in a given area forms a primary constraint to the withdrawal of groundwater. Hydrogeological maps provide guidance on the occurrence or absence of such aquifers. However, there are more natural constraints to groundwater withdrawal; a few important ones are mentioned and briefly described below.

Groundwater quality deficiencies form a major constraint to groundwater withdrawal. Although most groundwater within a few hundred metres below the land surface is fresh, more than half of all groundwater under the globe’s land surface is saline and therefore unsuitable for most types of water use. High groundwater salinity prevails in the deeper domains of sedimentary basins (paleo-salinity), but in many zones scattered over the world it is also observed at shallower depths, for instance in coastal areas and in zones with very shallow water table in arid climates (Van Weert et al., 2009). In addition, in some areas fresh groundwater does contain natural contaminants in excessive concentrations, for instance arsenic and fluoride.

1 Data that came available shortly before final editing of this report point to a global groundwater withdrawal of 978 km³ for 2018. The difference with the 2017 estimate lies within the margin of interannual variations and reporting inaccuracies.
Another constraint to groundwater withdrawal is depth below the land surface. If very deep boreholes have to be drilled to tap productive aquifers, or if groundwater levels are deep below the surface, then for most people and intended purposes the cost of well construction or of pumping may become prohibitive for abstracting groundwater. This constraint tends to enlarge differences in access between poor and wealthier segments of the local society.

Table 1 Groundwater withdrawals in 2017, aggregated by the world’s major regions

<table>
<thead>
<tr>
<th>Continent and region</th>
<th>Groundwater withdrawal (km³/year)</th>
<th>% change since 2010</th>
<th>% of total freshwater withdrawal</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>156</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>Northern North America</td>
<td>113</td>
<td>-1</td>
<td>24</td>
</tr>
<tr>
<td>Central America</td>
<td>37.1</td>
<td>+12</td>
<td>38</td>
</tr>
<tr>
<td>Caribbean</td>
<td>6.5</td>
<td>-37</td>
<td>27</td>
</tr>
<tr>
<td>South America</td>
<td>27</td>
<td>+6</td>
<td>13</td>
</tr>
<tr>
<td>Northern and Eastern South America</td>
<td>7.9</td>
<td>-32</td>
<td>9</td>
</tr>
<tr>
<td>Andean countries</td>
<td>4.7</td>
<td>-22</td>
<td>11</td>
</tr>
<tr>
<td>Southern South America</td>
<td>14.7</td>
<td>+83</td>
<td>19</td>
</tr>
<tr>
<td>Europe</td>
<td>65</td>
<td>-6</td>
<td>23</td>
</tr>
<tr>
<td>Northern Europe</td>
<td>4.7</td>
<td>-3</td>
<td>20</td>
</tr>
<tr>
<td>Western Europe</td>
<td>15.2</td>
<td>+1</td>
<td>22</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>15.2</td>
<td>-24</td>
<td>18</td>
</tr>
<tr>
<td>Southern Europe</td>
<td>29.7</td>
<td>+1</td>
<td>31</td>
</tr>
<tr>
<td>Africa</td>
<td>45</td>
<td>+10</td>
<td>20</td>
</tr>
<tr>
<td>Northern Africa</td>
<td>26.2</td>
<td>+24</td>
<td>21</td>
</tr>
<tr>
<td>Western Africa</td>
<td>8.0</td>
<td>+9</td>
<td>28</td>
</tr>
<tr>
<td>Central Africa</td>
<td>2.1</td>
<td>-21</td>
<td>72</td>
</tr>
<tr>
<td>Eastern Africa</td>
<td>6.3</td>
<td>-6</td>
<td>13</td>
</tr>
<tr>
<td>Southern Africa</td>
<td>2.8</td>
<td>-16</td>
<td>14</td>
</tr>
<tr>
<td>Asia</td>
<td>657</td>
<td>-4</td>
<td>26</td>
</tr>
<tr>
<td>Northern Asia</td>
<td>3.1</td>
<td>-10</td>
<td>15</td>
</tr>
<tr>
<td>Central Asia</td>
<td>2.7</td>
<td>-85</td>
<td>2</td>
</tr>
<tr>
<td>Western Asia</td>
<td>63.7</td>
<td>-3</td>
<td>39</td>
</tr>
<tr>
<td>South Asia</td>
<td>401</td>
<td>-5</td>
<td>39</td>
</tr>
<tr>
<td>East Asia</td>
<td>132</td>
<td>-6</td>
<td>18</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>54.2</td>
<td>+54</td>
<td>11</td>
</tr>
<tr>
<td>Australia & Oceania</td>
<td>8</td>
<td>+21</td>
<td>31</td>
</tr>
<tr>
<td>Australasia</td>
<td>7.5</td>
<td>+30</td>
<td>29</td>
</tr>
<tr>
<td>Micro-, Mela- and Polynesia</td>
<td>0.6?</td>
<td>-36?</td>
<td>79?</td>
</tr>
<tr>
<td>World</td>
<td>959</td>
<td>-2</td>
<td>25</td>
</tr>
</tbody>
</table>

Furthermore, near-shore groundwater withdrawal in coastal aquifers may trigger seawater intrusion, which will put an end to the local withdrawal of fresh groundwater. Sea level rise will similarly reduce groundwater withdrawal from low-lying coastal aquifers. Figure 8 shows global hotspots of zones vulnerable to seawater intrusion and to sea level rise. A somewhat similar physical condition constraining fresh groundwater withdrawal is the presence of saline or brackish groundwater underneath and hydraulically connected with shallow fresh groundwater. Fresh groundwater withdrawal in such areas (often also in coastal zones) tends to be hampered by upconing saline or brackish water.

Finally, groundwater-dependent ecosystems and shallow compressible sediment layers hydraulically connected to aquifers are additional components of the natural environment that may impose constraints on groundwater withdrawal, if ecosystem degradation and land subsidence have to be prevented. Global hotspots of land subsidence induced by groundwater withdrawal are shown in Figure 9.
Chapter 1

Introduction

WWAP
Michela Miletto, Jac van der Gun and Richard Connor

UNESCO-IHP
Dan Lapworth,* Abhijit Mukherjee and Alice Aureli

* Affiliated with the British Geological Survey
1.1 Purpose and scope of this report

The purpose of this edition of the United Nations World Water Development Report (WWDR 2022) is to shine a spotlight on groundwater, calling attention to its specific roles, challenges and opportunities in the context of water resources development, management and governance across the world.

Groundwater, accounting for approximately 99% of all liquid freshwater on Earth (Shiklomanov and Rodda, 2003), provides societies with tremendous opportunities for social, economic and environmental benefits, including potential contributions to climate change adaptation and to achieving the Sustainable Development Goals (SDGs). Its contribution to satisfying water demands is considerable. For example, groundwater provides 49% of the volume of water withdrawn for domestic use by the global population (Aquastat, n.d.; Margat and Van der Gun, 2013) and around 25% of all water withdrawn for irrigation, serving 38% of the world’s irrigated land (Aquastat, n.d.; Margat and Van der Gun, 2013; Siebert et al., 2013). Yet, despite its enormous importance, this natural resource is often poorly understood, and consequently undervalued, mismanaged and even abused. In the context of growing water scarcity in many parts of the world, the vast potential of groundwater and the need to manage it carefully can no longer be overlooked.

Groundwater is intimately interconnected and interacting with many other components of the Earth’s physical environment. This can be observed in the water cycle, where atmospheric water and surface water upon percolating to the subsoil become groundwater, which – in turn – sooner or later either discharges into surface water bodies or into the sea, or returns to the atmosphere through evaporation. Similar transformations take place in the water use chain, an anthropogenic side-branch of the water cycle: when groundwater or surface water is withdrawn, this raw water is in some cases by treatment converted into potable groundwater, it is supplied to users, and the non-consumed part of it subsequently becomes wastewater that is discharged – treated or untreated – to groundwater or surface water systems. Groundwater also participates in numerous other natural cycles and processes, and it plays an important role in sustaining human health, livelihoods, economic development and ecosystems. Awareness of these interlinkages has led to the widely shared view that groundwater development and management should take place in integrated approaches. However, this does not detract from the critical need to properly understand the specific facets of groundwater and of the processes it is involved in. This report intends to contribute to this understanding.

This first chapter of the report presents basic concepts and terminology related to groundwater and aquifers\(^2\) in the context of global perspectives and initiatives, and summarizes the main challenges and opportunities related to groundwater. The next chapter addresses legal and other institutional aspects of groundwater governance. The subsequent chapters describe groundwater from the perspective of the three main water use sectors in human society: agriculture (Chapter 3), human settlements (Chapter 4) and industry (Chapter 5), its interactions with ecosystems (Chapter 6), and its relation with climate change (Chapter 7). Chapter 8 presents different perspectives on groundwater from across five global regions. Finally, response options are described and discussed in terms of expanding the knowledge base (Chapter 9), groundwater policy and planning (Chapter 10), groundwater management (Chapter 11), transboundary aquifer resources (Chapter 12), and financing (Chapter 13). The report concludes with an outlook to moving forward in terms of the most prudent development, use, management and protection of the groundwater resources and creating the enabling conditions to do so (Chapter 14).

\(^2\) See section 1.3 for a definition and characterization of aquifers.
1.2 Unique properties and characteristics of groundwater systems

1.2.1 What is groundwater?
Many people consider groundwater to be synonymous with underground water, in other words all water below the land surface. Hydrogeologists and hydrologists, however, make a distinction between subsurface water in the saturated zone (where all interstices are completely filled with water) and that in the unsaturated zone (where the interstices contain both water and air). They reserve the term groundwater for the former only, thus to water below the water table. This stricter definition of groundwater is adopted throughout this report.

1.2.2 Unique properties and related characteristics
Groundwater and surface water are closely interconnected and interacting. For many human uses, either of the two may be substituted by the other one. Nevertheless, some properties and characteristics markedly distinguish groundwater systems (see Box 1.1) from surface water systems:

- Groundwater is present in pores, fissures and other voids within geological formations and it does not exist without this lithological matrix.
- Groundwater is invisible, hidden to the naked eye.
- Groundwater is a spatially distributed resource. It is virtually ubiquitous and extends laterally under most of the land surface – as opposed to surface water in streams and lakes that covers only a minor part of the land area.
- Groundwater occurrences are not only of large lateral extent, but have also a significant vertical dimension (3D geometry). Groundwater may extend vertically from very close to the land surface to great depths, down to thousands of metres.
- Groundwater is generally moving very slowly, mainly because the subsurface lithological matrix offers a hydraulic resistance to flow many orders of magnitude higher than the hydraulic resistance experienced in open channel flow. Groundwater flow in karst formations, however, may be quite fast.
- Large volumes of groundwater are stored in the subsurface, exceeding annual groundwater replenishment by two orders of magnitude, on average.

Box 1.1 Groundwater systems

Groundwater system is a generic term that may refer to different conceptual images of specific three-dimensional portions of the saturated underground. Well known among these are the concepts of aquifers and aquifer systems, identified and delineated on the basis of perceived contrasts in hydraulic properties with adjoining parts of the subsurface. They are defined and addressed in some more detail in Section 1.3. Other examples are the contributing subsurface segments of river basins (with groundwater divides as boundaries), groundwater flow systems as defined by Tóth (1963) and groundwater bodies as introduced by the European Union in its Water Framework Directive (European Parliament/Council, 2006; European Commission, 2008). The delineation of the latter does not follow a standardized methodology, but one of the criteria for defining the boundaries is jurisdiction with regard to groundwater. These conceptual images are a simplification of reality, but they are helpful for analysing and understanding the state of groundwater, relevant groundwater processes, and the interactions with people, ecosystems and other external systems (see also Figure 1.1).

³ This implies a hydrostatic pressure equal to or greater than the local atmospheric pressure.
As a result of the mentioned unique properties, groundwater systems in practice often show the following characteristics and features:

- Easy and *open access* to numerous people, leading to *common pool* characteristics.
- Often *poorly known* and understood, even by the local population.
- *Difficult and/or costly access* to exploration, assessment and monitoring activities. This constrains the development of sufficient and accurate knowledge on the local groundwater systems, necessary for adequate identification and analysis of opportunities and challenges, and potential responses.
- The large volumes of stored groundwater (groundwater reserves) form *huge water quantity buffers*, ensuring permanent availability of water in many regions with pronounced dry seasons and only intermittent or seasonally flowing streams.
- Within single large groundwater systems, *groundwater ages* commonly vary widely (from recent to tens of millennia old), while salinity and other quality parameters may also be subject to *significant variation*.
- Over time, *groundwater quality* may change due to long residence times and contact with the lithological matrix and subsurface biosphere.
- Compared to surface water systems, groundwater systems are usually *better protected against pollution* (due to the overburden’s resistance to flow), but once polluted they are much more difficult to remediate. Shallow groundwater domains, in turn, are more vulnerable to pollution than deeper ones.

1.3.1 Aquifers: spatial units defined by hydraulic subdivision of the subsurface

The geological formations that make up the subsurface – sedimentary, igneous and metamorphic rocks – show an almost endless variation in properties. The category of hydraulic properties is most relevant for understanding flow and storage of groundwater. Therefore, hydrogeologists commonly look at the subsurface through a hydraulic lens and subdivide it schematically into spatial units that differ from each other in terms of their capacities to store groundwater (linked to total or drainable porosity or void ratio) and to transmit groundwater (linked to permeability or hydraulic conductivity). Spatial units that score comparatively high in both respects are called *aquifers*; they combine the functions of groundwater reservoir and ‘highway’ for groundwater flow.

Various *aquifer* definitions can be found in textbooks and other publications. They show differences in perspective (source of water supply versus ‘neutral’ groundwater flow) and some definitions seem to associate an aquifer exclusively or mainly with the lithological matrix (container) and not or less with groundwater in its interstices (content). Box 1.2 presents a simple but clear definition, to-the-point and compatible with the views of most groundwater professionals.

Box 1.2 What is an aquifer?

An aquifer is a saturated permeable geologic unit that can transmit significant quantities of water under ordinary hydraulic gradients (Freeze and Cherry, 1979).
The delineation of aquifer boundaries is often difficult, in particular if the aquifer is lithologically heterogeneous, large in extent or deeply buried. It requires the involvement of competent hydrogeologists capable of properly interpreting the structure, continuity and properties of geological formations in the subsurface that usually only have been observed in a limited number of locations.

1.3.2 Other hydraulic units in the subsurface

Aquifers interact with other hydraulically distinct units in the subsurface, in particular with the unsaturated zone and with aquitards (see definition below). Figure 1.1 presents a hypothetical vertical cross-section in which aquifers and some other subsurface hydraulic units are shown.

The unsaturated zone stretches from the land surface down to the water table. The interstices (pores or fissures) in the matrix of this zone are not entirely filled with water, but contain also air. Water in the unsaturated zone has a pressure lower than atmospheric pressure, due to matrix suction forces, which influences its hydraulic behaviour. The unsaturated zone plays a role in groundwater recharge by transmitting excess rainfall or surface water downward from the land surface to the saturated zone. In areas with shallow water tables, it facilitates the upward flow needed for groundwater to be discharged directly to the atmosphere by evaporation or evapotranspiration.

Aquitards are subsurface formations containing significant quantities of groundwater but incapable to transmit significant quantities to wells. Their permeability is low compared to that of aquifers, but on a regional scale they may yield substantial quantities of water to adjoining aquifers or transmit water between the aquifers it separates. Hydraulically, aquitards function as confining or semi-confining layers.

The remaining lithological units in the subsurface are hydraulically inactive and form barriers to groundwater flow, either because of very low permeability, or because interconnected interstices are lacking. Somewhat outdated terms for these confining units are aquicludes and aquifuges, respectively.
1.3.3 Aquifer types

Aquifers can differ and be classified on the basis of a variety of criteria, such as:

- **Size**: aquifers range in lateral extent from less than hundred to more than a million km², while their thickness may vary from less than ten to more than one thousand metres.

- **Lithology**: the most productive aquifers are composed of sand and gravels (unconsolidated), sandstones (consolidated), karstic limestones or certain volcanic rocks (e.g. basalts); weathered bedrock may form local aquifers, usually less productive.

- **Stored volumes (reserves)**: largest in thick and porous sedimentary aquifers, smallest in fissured bedrock aquifers.

- **Location with respect to land surface**: shallow aquifers (with their top less than a few tens of metres below surface) are likely to be more actively involved in the water cycle than moderately deep- or deep-seated aquifers; in addition, groundwater withdrawal becomes more expensive and technically challenging with increasing depth.

- **Unconfined or confined**: unconfined aquifers have a free water table that moves vertically with changes in storage, while in confined aquifers there is no free water table since the water pressure below the upper confining layer is everywhere exceeding atmospheric pressure. The change of storage in confined aquifers is not related to a moving water table, but is accompanied by elastic responses of stored water and the solid matrix to changes in pressure.

- **Recharge conditions**: many aquifers are abundantly recharged (hundreds of millimetres per year) and therefore contain renewable groundwater resources; others (mainly in dry or permafrost areas) are not significantly recharged, hence the water they contain is classified as non-renewable.

- **Domestic versus transboundary aquifers**: domestic aquifers are situated entirely within one single jurisdiction (national or subnational), while aquifers crossed by national or other jurisdictional boundaries are called transboundary.

Important aquifers usually have a name, for easy identification and communication.

1.3.4 Hydrological regime of an aquifer

The principle of mass conservation implies that groundwater recharge is always balanced by groundwater discharge and change in storage. Consequently, human activities such as groundwater withdrawal and artificial recharge produce shifts in the water budget: the former leads to reduction of natural discharge and/or groundwater storage, the latter to the opposite.

1.3.5 Aquifer systems

Depending on area-specific conditions and on the scale of investigation or mapping, two or more stacked aquifers with intercalated and overlying aquitards may together be called an aquifer system, provided that they are interconnected components of one hydraulically continuous system. If, for instance in Figure 1.1, the confining unit between the two aquifers would be leaky (and thus would be an aquitard), then there is hydraulic connectivity between the two aquifers, which means that together with the aquitard they form an aquifer system. In practice, the distinction between aquifers and aquifer systems is somewhat arbitrary, because distinguishing between aquitards and low-permeability lenses, as well as between permeable and poorly permeable rocks, is subjective. With increasing complexity and size, the term ‘aquifer system’ tends to be preferred. The largest aquifer systems in the world, located in deep sedimentary basins, are up to few million square kilometres in lateral extent and thousands of metres deep. The deeper parts of most such aquifer systems are filled with saline water.
Groundwater has been abstracted and used for human purposes since time immemorial. For a long time, this must have been limited to tapping water from springs and from shallow dug wells. Muscular energy of animals or humans was used to lift water from the wells to the surface. Over time, techniques have been developed to use this energy as efficiently as possible, such as the shaduf (early predecessor of the handpump), and the animal-driven saqiya (modified Persian wheel) and arhor (Margat and Van der Gun, 2013; Yannopoulos et al., 2015). These techniques contributed to the development of small-scale groundwater-based irrigation, but the groundwater abstraction rates remained low in this early stage of development.

A major step forward was the invention and introduction of the qanat system, around 1000 to 800 BCE, a tunnel system that taps shallow groundwater and conveys it under gravity, thus without the need for external energy to bring groundwater to the surface. It is believed that qanats originated in Northwest Iran and from there spread over the Middle East, Northern Africa and Southern Europe, while they are also found in Central Asia, Western China and South America (English, 1968; Mostafaeipour, 2010). They have been – and still are in some countries – of great importance for irrigation and human settlements in arid regions.

Windmills are another ancient energy-saving technique to bring water to the surface. It is not known since when they have been in use for pumping groundwater: most likely since the Middle Ages or earlier. They are currently still in use, in particular for cattle watering and small-scale irrigation (Yannopoulos et al., 2015; Glazema, 2003).

Although percussion drilling techniques were developed in China already one thousand years ago for the exploitation of deep brines (Kuhn, 2004; Han and Cheng, 2013), digging remained until recent times the common technique for constructing water wells across the world, restricting groundwater withdrawal to relatively shallow depths. Development of well-drilling techniques, starting in the early 19th century, heralded a major revolution, although it took a long time before these techniques became sufficiently advanced and were widely applied around the world. They paved the way for exploring and exploiting deeper aquifers, and were also instrumental in discovering artesian aquifer zones where flowing wells could be constructed. At the beginning of the 20th century, the appearance of high-capacity power-driven pumps capable of pumping deep groundwater led to unprecedented increases in groundwater abstraction in response to ever-increasing water demands. Consequently, groundwater withdrawal boomed during the 20th century, starting during early decades in the USA, Mexico and several European countries, and in most other countries during the second part of the century or near its end.

Figure 1.2 illustrates the evolution of groundwater withdrawal during the period 1950–2020 for selected countries (countries for which sufficient data are available). It shows clearly the difference in timing of maximum growth between the USA and Asian countries like India, China, Pakistan and Iran. The total global groundwater withdrawal during 2017 is estimated at 959 km³ (see Prologue), of which 68% corresponds to the nine countries shown in Figure 1.2. Assuming that the remaining countries in the world followed on average the same pattern of increase, it is estimated that the globally aggregated groundwater withdrawal was only 158 km³/year in 1950, and that this increased over the successive decades by the following mean annual percentages: +3.7% (1950–1960), +4.8% (1960–1970), +3.9% (1970–1980), +3.4% (1980–1990), +1.8% (1990–2000), +0.8% (2000–2010) and −0.2% (2010–2017). Its share in total freshwater withdrawal has risen from 12% in 1950 to 25% in 2017. It can be observed that groundwater withdrawal rates have more or less stabilized in the USA, most European countries and China.

The uses, benefits and challenges of groundwater in the agricultural, domestic and industrial sectors are described in the Chapters 3, 4 and 5, respectively.
Groundwater withdrawal for human uses is very important, but it corresponds to only one category of the services offered by groundwater systems (provisional services). It should not be overlooked that groundwater offers many more services, as indicated in Figure 1.3. Most of the services mentioned in this figure are obvious, but a few explanatory comments are presented.

- **Provisioning services** allow groundwater to be withdrawn for water use purposes, but in some cases withdrawal is merely for extracting the geothermal energy it carries, after which the abstracted water is returned to the subsurface.

- **Regulatory services** are in-situ services that reflect the buffer capacity of aquifers (see Section 1.2); they mainly regulate the groundwater systems’ water quantity and water quality regimes.

- **Supporting services** are in-situ services, too; they are focusing on groundwater-dependent ecosystems (GDEs) and other groundwater-related environmental features. Not only aquifers, but also aquitards may play an important role in this category, sometimes a main role (control of land subsidence).
Finally, groundwater provides also cultural services; those linked to leisure activities, tradition, religion or spiritual values are associated with particular sites rather than with an aquifer. Indeed, groundwater has played an important role in cultures and religions across the world, from the caves and springs venerated by the Mayan peoples of Mexico to the dragon wells and sacred springs of China (Ray, 2020).

Provisioning services are potentially conflicting with the supporting services: the latter tend to become stressed under intensive groundwater withdrawal. Groundwater governance and management have to pursue an optimal balance between conflicting or competing services.

Figure 1.3 The multiple services offered by groundwater systems

![Groundwater systems diagram](https://example.com/groundwater-systems-diagram)

Source: Based on Van der Gun (2019, fig. 5).

1.6 **Global interconnections**

Groundwater is basically a local resource, predominantly viewed by practitioners in a local context. Nevertheless, it is interconnected with its surroundings at different spatial scales, which implies that different perspectives are required to oversee and address the full range of relevant issues: not only the local perspective counts, but also aquifer-wide, national, transboundary, regional and global perspectives. Some important global interconnections regarding groundwater are briefly reviewed below.

1.6.1 **Groundwater in the global water cycle, interacting with climate and other global systems**

With its specific characteristics, especially its buffering capacity, groundwater puts its distinct mark on the global water cycle. However, the global water cycle and its water budget are not in a dynamic equilibrium: they are being modified by climate change and by increasingly significant human interferences, such as groundwater withdrawal and land use practices. In principle, the interaction is bi-directional, which implies that a modified water cycle will also produce feedback to the global climate. The last few decades have witnessed considerable progress in assessing and understanding these global-scale modifications and their repercussions. A new discipline has emerged: Global Hydrology. It uses hydrological models at a global scale, exploring large-scale hydrological patterns and processes, coupled with climate, land use or water use models, in order to obtain a better understanding of the Earth system. Coupling with other domains – food security, economics, energy and biodiversity – lies ahead (Bierkens, 2015).
1.6.2 Groundwater and Earth system resilience
As pointed out by Gleeson et al. (2020a), different processes within the global water cycle regulate climate and support ecosystems. Human activities – including groundwater withdrawal – currently are a major force disturbing these processes, potentially causing planetary-scale regime shifts that threaten the stability of our planet as a suitable habitat for humans and ecosystems. It is important to explore how resilient our planet is to such regime shifts and how to control them.

1.6.3 Groundwater and sea level rise
Intensive groundwater withdrawal causes a reduction of stored terrestrial water, which produces a nearly equal increase of the volume of water in the oceans. Estimates of the corresponding annual global contribution diverge (Wada et al., 2010, 2016; Konikow, 2011; Bierkens and Wada, 2019), but there is no doubt that it forms a significant contribution to the total observed and predicted sea level rise, in addition to the climate change contributions. The main impacts of sea level rise are coastal inundation, flooding and increasing saline water intrusion.

1.6.4 Global degradation of groundwater-dependent ecosystems
Groundwater-dependent ecosystems are very vulnerable to intensive groundwater withdrawal. Continuously expanding groundwater withdrawal across the globe causes global-scale decline of baseflows, springs, artesian flows and wetlands, leading to loss of the biodiversity and to encroaching desertification in the longer run (see Chapter 6).

1.6.5 Groundwater and global trade
Global trade has enabled food and other commodities to be produced at large distance from where they are consumed or used. According to Hoekstra (2018), 22% of water use in the world is for producing export products. Consequently, large volumes of ‘virtual water’ travel across the world, implying that a variable percentage of countries’ water footprint of consumption lies outside their own territory (the ‘external footprint’). International trade obviously yields economic benefits to exporting countries, but water savings in importing countries risk increasing water stress in exporting countries. For 2010, global groundwater depletion embedded in food production was estimated at 141 km³/year, of which 26 km³/year was exported (Dalin et al., 2017).

1.7.1 UNESCO’s Intergovernmental Hydrological Programme
The Intergovernmental Hydrological Programme’s (IHP) major achievements with special focus on groundwater include the worldwide promotion of hydrogeological mapping (Gilbrich and Struckmeier, 2014), the establishment of a global initiative on transboundary aquifers (the Internationally Shared Aquifer Resources Management initiative, or ISARM), the World-Wide Hydrogeological Mapping and Assessment Programme (WHYMAP) and the establishment of the International Groundwater Resources Assessment Centre (IGRAC). The main objective of IHP’s eighth phase (IHP-VIII 2014–2021) was to translate scientific knowledge into the action that is required for water security.

1.7.2 The 2030 Agenda for Sustainable Development
The UN Sustainable Development Goals (SDGs – Figure 1.4) are a call for action by all countries – poor, rich and middle-income – to promote prosperity while protecting the planet. The 17 SDGs were adopted by all UN Member States in 2015, as part of the

4 The term ‘virtual water’ was introduced by Allan (1998, 2003) to indicate the water needed to produce agricultural and other commodities. International trade implies virtual water flows between countries.
Although only one SDG target makes explicit reference to groundwater in its wording (Target 6.6), no less than 53 targets appear to be interlinked with groundwater, including – but not limited to – all targets related to SDGs 6, 12 and 13. In the majority of the cases, there is synergy between achieving the target and trends or aspirations regarding groundwater ('reinforcing linkages'), but in some cases they are conflicting or of a mixed character (Guppy et al., 2018). Groundwater is a key resource for achieving the goals of the 2030 Agenda, which implies that adequate groundwater expertise and local hydrogeological knowledge are required for its successful implementation (Velis et al., 2017; IAH, 2017). There is a strong case for defining additional ‘groundwater status indicators’ for several SDG 6 targets, because groundwater is integral to these, but not adequately dealt with so far (IAH, 2017).

Figure 1.4
The Sustainable Development Goals

1.7.3 Water, sanitation and hygiene (WASH)

Reporting on the worldwide improvement of access to safe drinking water, sanitation and hygiene belongs to the missions of the World Health Organization (WHO) and United Nations Children’s Fund (UNICEF), in cooperation with numerous other organizations. Their Joint Monitoring Programme (JMP) for WASH has reported on country, regional and global progress on drinking water, sanitation and hygiene since 1990.

Figure 1.5 shows the status and progress in regional and global drinking water coverage during the period 2015–2020. The percentage of the world population using safely managed drinking water services increased from 70% to 74%, but differences between and also within the regions are considerable. Similar statistics are available for sanitation services: use of safely managed sanitation services increased from 47% to 53% of the world population during 2015–2020. JMP reports furthermore that, by 2020, 71% of the world population had basic handwashing facilities with soap and water available at home (WHO/UNICEF, 2021). The latter facilities have gained importance since the outbreak of the Covid-19 pandemic, because handwashing is indicated to reduce the transmission of viruses strongly (Brauer et al., 2020).

JMP does not specify the share of groundwater in WASH services and their progress, but it is certainly considerable.
The capacity of groundwater systems to offer various services (as shown in Figure 1.2) depends on their geographically varying properties (See Prologue) and is dynamically influenced by ongoing natural and human processes. The latter lead to numerous groundwater-related challenges in all parts of the world, in particular in densely populated areas. The main types of these challenges are briefly described below. More details and potential responses are presented in several other chapters of this report, either in a thematic (Chapters 3–7), a regional (Chapter 8) or a governance/management context (Chapters 10 and 11). Addressing the challenges requires a good understanding of the underlying causal chain – from root causes (such as population growth, economic development and climate change) via stresses (e.g. groundwater withdrawal, influx of pollutants) to changes in groundwater state (groundwater quantity, water levels/pressures, water quality) and their impacts on humans, ecosystems and the environment.

1.8 Challenges related to groundwater

1.8.1 Long-term groundwater storage depletion

Groundwater storage depletion, accompanied by declining groundwater levels, occurs when groundwater discharge (i.e. the sum of groundwater withdrawal and ‘unforced’ or natural discharge) exceeds groundwater recharge. Although climate variability and climate change can also play a role (by influencing groundwater recharge and water demands), most cases of long-term groundwater storage depletion result from intensive groundwater abstraction. Long-term groundwater depletion is observed in countless aquifers, predominantly located in semi-arid and arid zones, where it often forms a major threat to sustainable groundwater use for irrigation. The rate of global aggregated groundwater storage depletion is considerable: for the beginning of the present century, the estimates are mostly between 100 and 200 km³/year (Bierkens and Wada, 2019).
The potential impacts of groundwater level declines include:

• increasing costs, technical complexity and energy demands of groundwater abstraction;
• increasing water scarcity caused by wells, aquifer zones or entire aquifers running dry;
• degradation of groundwater-dependent ecosystems and other non-provisioning groundwater services;
• land subsidence in areas with highly compressible sediments or other geological formations prone to deformation in response to changes in water pressure;
• competition between groundwater-using sectors or between individual well users; and
• increasingly inequitable access to groundwater (including the loss of intergenerational equity).

Well-known large aquifer systems affected by significant long-term storage depletion are those of the Indo-Gangetic Plains, the North China Plain, the California Central Valley, the US High Plains and the Arabian Aquifer System. Most of the groundwater withdrawn from these aquifer systems is used for irrigated agriculture.

Land use, land use practices, artificial drainage and surface water management are other human activities influencing groundwater storage.

1.8.2 Groundwater pollution

Groundwater pollution reduces the suitability of abstracted groundwater for drinking purposes and other human uses, while it may also affect groundwater-dependent ecosystems.

There are many sources of anthropogenic groundwater pollution: most of them are located at or near the land surface (agriculture, households, sewerage, landfills, industries and other urban sources, storage tanks, roads, canals, pipelines, etc.), but several other sources inject pollutants into the subsurface at greater depth below the surface (wells, oil and gas development, mining, subsurface disposal, and other subsurface human activities). Agricultural pollution is widespread; it is a diffuse source (non-point source) that often includes large quantities of nitrate, pesticides and other agrochemicals. In contrast, industries and households usually produce point-source pollution. The range of industrial pollutants is very large (numerous organic and inorganic substances, microorganisms, radionuclides) and varies according to the types of industrial products. Among the pollutants produced by households and found in sewerage, microbiological compounds and so-called ‘emerging micro-pollutants’ (e.g. PPCPs5 and EDCs6) are distinctive (Lapworth et al., 2012).

As mentioned already in the Prologue, in addition to anthropogenic pollutants, geogenic pollutants (e.g. arsenic and fluoride) may also be present in the subsurface. Human action such as groundwater pumping may contribute to their release from the rock matrix and to their subsurface transport.

Groundwater pollution is a virtually irreversible process: once polluted, aquifer zones tend to remain with polluted water. Since most anthropogenic sources of pollution are located at or near ground surface, pollution is most often observed in shallow aquifers zones, in particular if a protecting low-permeability layer is absent. However, due to

5 PPCPs: Pharmaceuticals and Personal Care Products
6 EDCs: Endocrine Disrupting Compounds
steadily increasing human activities in the deeper subsurface domains (hydrocarbon
development, fracking, subsurface storage, etc.) pollution is also encroaching into deeper
zones, although this is somewhat less widespread. Groundwater pollution is a major issue
in almost all areas characterized by high population density and/or significant agricultural
or industrial production.

1.8.3 Groundwater salination

Fresh groundwater zones may become brackish or saline in several ways.

One of the mechanisms is related to flooding by seawater. Seawater inundating low-lying
coastal land tends to infiltrate into underlying aquifers, replacing fresh groundwater by
saline water. This happens either suddenly, during exceptional events (storm surges or
tsunamis), or gradually, in tandem with the slow marine transgression caused by sea
level rise. In terms of areal extent, only a very minor percentage of the Earth’s land area
is exposed to the risk of marine flooding, but these areas are often comparatively highly
populated. Moreover, in view of predicted sea level rise, this phenomenon threatens to
deprive low-lying islands of extremely flat topography (such as atolls in the Pacific Ocean)
from sufficient freshwater resources for continued human habitation.

Groundwater abstraction is another trigger of groundwater salination. It may induce sea
water intrusion in coastal areas, and it may cause relatively stagnant brackish or saline
groundwater to start moving in vertical or horizontal direction, towards the exploited
fresh groundwater zone. Both mechanisms form significant threats to fresh groundwater
resources, especially in coastal areas.

Another significant cause of groundwater salination is irrigation. After application,
irrigation water is temporarily stored in the upper soil zone, from where crops withdraw
it. This water uptake by crops is selective, in the sense that part of the dissolved solids
remains behind in the soil. These salts are subsequently flushed down, either by rains
during wetter periods of the year, or by an irrigation water surplus applied by the farmer
to prevent soil salination. As a result, the dissolved solids content of shallow unconfined
aquifers in irrigated areas tends to increase gradually, unless drainage provisions divert
the mineralized water to surface water bodies. This groundwater salination mechanism
is additional to the increase of dissolved solids in groundwater caused by downward-
percolating agrochemicals.

1.8.4 Priority, allocation and access issues

In absence of any form of community or government control, it is unlikely that an
optimal combination of groundwater services will develop in a given area, and that all
inhabitants will share equally in the benefits from groundwater. This is due to factors
such as incompatibility between groundwater services, competition between potential
groundwater users, the open-access and common-pool characteristics of groundwater,
and the lack of a level playing field.

In many areas, it can be observed that groundwater-dependent ecosystems suffer
and degenerate as a consequence of uncontrolled intensive groundwater abstraction
by individuals or companies in pursuit of short-term economic profits; that most
groundwater is abstracted by the wealthier segments of the population, while relatively
poor and landless people (including refugees and other migrating groups) often have no
or very limited access to groundwater; that groundwater development for public domestic
water supply often gets insufficient priority and therefore remains inadequate; and that
those who enjoy the profits of groundwater withdrawal often ignore the associated
negative externalities, at the expense of resource sustainability and future generations.
Such issues tend to become burning challenges, in particular in water-scarce areas, and
therefore need to be addressed in policies.
The impressive volumes of groundwater withdrawn and used, and the widespread evidence of in-situ groundwater services demonstrate the enormous importance of groundwater for humankind and groundwater-dependent ecosystems. Although the current rates of groundwater withdrawal are unsustainable in several areas and thus will decrease sooner or later, there are also various opportunities left for enhancing benefits from groundwater. Such opportunities – that will contribute to achieving goals defined at local, national or supranational levels (e.g. the European Union Groundwater Directive or the United Nations’ SDGs) – are described below. Most of these opportunities focus on making more groundwater available to human society, which is needed to meet ever-increasing water demands driven primarily by population growth and climate change.

1.9.1 Tapping the unexploited groundwater potential
In contrast to intensively exploited aquifers, in several regions of the world there are also aquifers that are still exploited at very low rates, far below the maximum sustainable rates. These aquifers harbour an unexploited groundwater potential, available for being tapped and used. A global inventory of such aquifers is not yet available, but available information suggests that many of them can be found in sparsely populated regions of Sub-Saharan Africa (MacDonald et al., 2012; Cobbing and Hiller, 2019), the northern half of South America, the Russian Federation and Canada, among others (Margat and Van der Gun, 2013). The rates of withdrawal are in parts of these regions constrained by insufficient financial means for appropriate technical infrastructure rather than by low water demands or low availability of groundwater.

1.9.2 Developing unconventional groundwater resources
Under conditions of increasing water scarcity, the development of unconventional groundwater resources may be considered. They may supplement scarce freshwater sources, but their development is usually less attractive than conventional groundwater withdrawal due to technical, environmental or financial feasibility constraints.

One of these unconventional resources is brackish groundwater, often present at relatively shallow depths. Brackish groundwater can be used directly, without any treatment, for purposes such as brackish aquaculture, cooling systems, operations in the oil and gas industry, and – if the mineral content is not too high – irrigation of salt-tolerant crops. For purposes that require water of lower mineralization, such as drinking water use, brackish groundwater can either be mixed with freshwater, or be desalinized. Especially in the Arab region and in the drier parts of the USA, there exists much interest in developing brackish groundwater (Stanton and Dennehy, 2017; Dawoud, 2019).

Deep-seated fresh groundwater (here defined as groundwater present in aquifers of which the top is deeper than 500 m below the surface) is only rarely tapped for water supply, thus can be classified as an unconventional groundwater resource. It is an interesting option if the corresponding deep-seated aquifer is substantially recharged. However, most deep-seated aquifers are likely to contain non-renewable groundwater resources only, which precludes sustainable groundwater development. Rather, these resources might be tapped temporarily as a buffering emergency resource during exceptionally dry periods, when other water sources run short (Van der Gun et al., 2012).

Already in antiquity, offshore fresh groundwater was a known phenomenon and submarine freshwater springs were used for drinking purposes at some locations (Taniguchi et al., 2002). Recent inventories have demonstrated that offshore fresh or brackish groundwater occurs in many parts of the world, either in submarine discharge zones of aquifer systems that are recharged on the neighbouring land (Taniguchi et al., 2002; Zhou et al., 2019), or as bodies of non-renewable groundwater originating from previous geological times (Post et al., 2013; see also Figure 7 of this report’s Prologue). According to the cited references, the global aggregated discharge rate and stored volumes are considerable. Exploiting these unconventional groundwater resources, however, is not easy and is likely to be expensive.
1.9.3 Expanding geothermal energy development
As described in Chapter 7, groundwater offers in different ways opportunities for developing geothermal energy. Despite progress made in recent years, this branch of energy development is still in its infancy. There is ample room for expanding geothermal energy development globally, which will not only enhance the global benefits obtained from groundwater, but also make a significant contribution to the transition to cleaner energy and carbon neutrality.

1.9.4 Expanding anthropogenic replenishment of the groundwater buffer
Managed aquifer recharge (MAR) is an effective technical intervention that makes use of the naturally available storage capacity of the subsurface (see Box 7.1 and Section 11.5). Excess water that otherwise would be lost is temporarily stored and made available for beneficial use at a later moment in time. The application of MAR has increased by a factor of 10 over the last 60 years, but there is still ample scope for further expansion, from the current 10 km³/year to probably around 100 km³/year (Dillon et al., 2019). MAR ranks under the most effective groundwater management interventions.

1.9.5 Adapting to climate change and mitigating disasters
The exceptionally wide occurrence of large volumes of groundwater, combined with the resource's unique buffer function, offers great potential for water supply security in climate change adaptation.

The ability of groundwater resources to buffer during short-term changes and shocks can also help mitigate the impacts of anthropogenic and natural disasters and emergencies, such as industrial accidents, droughts, floods, earthquakes and landslides, when surface water supply systems are directly affected (Vrba and Verhagen, 2011).
Chapter 2

Legal and other institutional aspects of groundwater governance

UNDP
Jenny Grönwall* and Marianne Kjellén

UNESCO-IHP
Alice Aureli, Stefano Burchi,** Mohamed Bazza** and Raya Marina Stephan

With contributions from:
Gabriel Eckstein (Texas A&M University School of Law), Lesha Witmer (WfWP), Margreet Zwarteveen (IHE Delft), Aurélien Dumont (UNESCO-IHP), Danielle Gaillar-Picher (GWP), Rio Hada (OHCHR), Rebecca Welling (IUCN) and Maki Tsujimura (University of Tsukuba).

* Commissioned through Water Governance Facility, hosted by SIWI
** Affiliated with AIDA, on behalf of UNESCO
This chapter defines the linked concepts of groundwater governance and groundwater management, explaining how they differ from each other. Then, it describes the prevailing legal instruments for, and the institutional aspects of, groundwater management and governance.

2.1 Groundwater governance and management

Groundwater governance and management both address abstraction and allocation, use efficiency, and quality protection. While often used interchangeably, this report distinguishes between the two concepts (see Boxes 2.1 and 2.2, respectively). Groundwater governance processes set the conditions for and enable groundwater management, planning, and policy implementation. Principles for ‘good’ water governance include equitable access, accountability, transparency, stakeholder participation, inclusiveness, etc. Groundwater management is action-oriented: focusing on practical implementation activities and the ‘nitty-gritty’ of day-to-day operations, it emphasizes the results of decisions (Linton and Brooks, 2011).

Groundwater governance and management can be challenging because of the common-pool nature of most underground resources, along with information gaps and the diversity of stakeholders and their interests (Ross, 2016). Aquifer systems (the saturated rock or sediment medium, and the water contained in the saturated zone of the formation) act as ‘hosts’ of the resource, providing ecosystem services such as natural storage (green infrastructure) (United Nations, 2021; Puri and Villholth, 2018; UNGA, 2009). The hydrogeological, socio-economic, and politico-institutional realities of aquifer systems need to be considered alongside how they are used and managed. The time lag and invisibility of groundwater resources add to the complexity: negative impacts on groundwater may remain unseen for years, and physical limits of the aquifer are invisible to both users and decision-makers. As a result, the risks and problems associated with groundwater and aquifers are often not addressed proactively.

Box 2.1 Defining groundwater governance

Much effort has gone into identifying the core characteristics of groundwater governance. The most comprehensive effort has been carried out by the project ‘Groundwater Governance – A Global Framework for Action’ (Groundwater Governance Project, 2016a, 2016b, 2016c). It defined groundwater governance as follows:

“Groundwater governance comprises the promotion of responsible collective action to ensure control, protection and socially-sustainable utilization of groundwater resources and aquifer systems for the benefit of humankind and dependent ecosystems. This action is facilitated by an enabling framework and guiding principles” (Groundwater Governance Project, 2016c, p. 17).

Drawing on this definition, governance has a set of four essential components or provisions:

1. an institutional framework characterized by representation and leadership, organizations and capacity, and stakeholder engagement and participation;
2. a comprehensive legal framework;
3. knowledge systems and more generalized awareness about issues; and
4. policies, incentive structures and plans aligned with effective governance.

The guiding principles of groundwater governance are:

- conjunctive management of surface water and groundwater;
- co-management of both quantity and quality of groundwater resources;
- co-governance of subsurface space and subsurface resources, which comprises the regulation of all activities and functions located in the subsurface space to ensure harmonized use and avoid undesirable and irreversible damage;
- ‘vertical’ integration in planning and management between local, district/provincial, and federal-level authorities, as well as international levels, as applicable; and
- (horizontal) policy coordination of other sectors that affect, or are affected by, groundwater.
Groundwater governance and management occur within the broader policy environment of a country or basin, and are related to policy principles and planning, legal aspects, and implementation. Figure 2.1 suggests how overarching ideas and policy principles are translated, partially through laws and regulations, into management instruments. However, the methodologies and approaches for implementation are a critical filter or vehicle for the outcomes of the policy intensions.

Box 2.2 Defining groundwater management

The Groundwater Governance Project (2016c, p. 17) defined groundwater management as "... the activities undertaken by mandated actors to sustainably develop, use and protect groundwater resources".

Management comprises measures, interventions, actions and activities that can be practical, technical and tangible to varying degrees, and that aim to "control groundwater abstraction and to prevent the degradation of groundwater quality, typically with the objective of ensuring sustainable freshwater provision and preserving desired environmental and ecosystem conditions that depend on groundwater." Technical management activities involve drilling and maintaining wells, installing water-saving technologies, etc. (see Chapter 11).

Groundwater governance and management occur within the broader policy environment of a country or basin, and are related to policy principles and planning, legal aspects, and implementation. Figure 2.1 suggests how overarching ideas and policy principles are translated, partially through laws and regulations, into management instruments. However, the methodologies and approaches for implementation are a critical filter or vehicle for the outcomes of the policy intensions.

Figure 2.1 Main elements of groundwater governance and management, from policy principles to implementation approaches

Source: Authors.
Because groundwater is often perceived as a private resource (that is, closely connected to land ownership, and in some jurisdictions treated as privately owned), regulation and top-down governance and management are difficult. In practice, decisions relating to individual wells are mainly exercised by (land-) owners, and it is often difficult for governments to quantify, allocate and regulate groundwater withdrawal and usage, particularly if their resources are limited. The corollary is that almost everywhere, groundwater governance and management must include public and private stakeholders, as well as local communities. At the same time, governments need to fully assume their role as resource custodians in view of the common/public good aspects of groundwater. Greater integrity and policies that enhance access for smallholders and women have a greater chance of contributing to the common good and achieving sustainable development.

Legislation regarding groundwater resources defines binding and enforceable entitlements, and identifies rights and obligations that are subsequently operationalized through management decisions, including monitoring and enforcement. For instance, the European Union’s Water Framework Directive (European Parliament/Council, 2000) and its Groundwater Directive (European Parliament/Council, 2006) have triggered a large number of management activities.

Laws and regulations that incorporate societal goals and policy objectives (see Chapter 10), and that set an enabling and regulatory framework for achieving those goals, are fundamental components of groundwater governance. They are also instrumental to the management of groundwater. Stable legal frameworks also enable governments and groundwater users to plan for resources management (see Chapter 10) over the long term and to deal with competing interests, including those of the environment and of future generations (Smith et al., 2016).

Legal frameworks need to include protection of discharge and recharge zones and of the area surrounding water supply wells, as well as sustainable yield norms and abstraction controls, and conjunctive use regulations. Such frameworks would require data sharing to facilitate important processes, among other things the balancing of competing or conflicting interests among stakeholders, the reduction/elimination of inequalities in accessing and benefiting from the resource, and coordination with urban and rural land uses for management of the entire subsurface space (Groundwater Governance Project, 2016c).

Domestic laws and regulations dictate access to groundwater as well as human activities that impact the quality of groundwater (see Section 2.2.2). Additional relevant legal instruments include those that:

(a) Provide access to water for basic needs, as a matter of human rights. The human rights to water and sanitation, as well as the right to a safe, clean, healthy and sustainable environment, differ from water rights in that they are neither temporary nor subject to state approval, and in that they cannot be withdrawn. The General Assembly of the United Nations and the Human Rights Council recognize that equitable access to safe and clean drinking water and sanitation are human rights (UNGA, 2010; UNHRC, 2010). As such, groundwater resources need to be protected as part of the human right to a safe, clean, healthy and sustainable environment, which was recently recognized by the Human Rights Council (UNHRC, 2021). In places where water services are lacking or inadequate, households and communities’ groundwater reliance is multiple times higher, with implications for states’ duties to respect, protect and fulfil the right to safe drinking water in relation to resource protection. The role of the state ranges from advising end-users to protect ‘their’ groundwater resources, to supporting households whose wells have dried up due to recurrent drought (Grönwall and Danert, 2020).
(b) Afford access to groundwater for the livelihoods and small-scale productive uses of traditional communities, in fulfilment of customary law. Formal rules, however, may ignore customary law with the result that users are left without legal protection before formal water rights holders (Hodgson, 2016). Customary rules continue to play a significant role, for instance with respect to groundwater resources being perceived as belonging to the community, while rejecting the concept of individual rights. In much of Africa and Asia, customary water rights are intrinsically linked to land and embedded in land tenure systems (Mechlem, 2016; Meinzen-Dick and Nkonya, 2007). However, customary rules relating to water resources may be unfair or even discriminatory, and against the interests of women, children and minorities (Hodgson, 2016); where women and minority groups are denied formal land ownership, they may also be deprived of groundwater rights. The responsible governance of land tenure, fisheries and forests is inextricably linked with access to and management of other natural resources, such as groundwater (FAO, 2012).

(c) Regulate land uses inimical to the natural groundwater recharge and discharge processes, and to the environment-support function of groundwater in relation to, in particular, wetlands and oases.

(d) Regulate the formation and functioning of associations of groundwater users for allocation, monitoring and policing responsibilities at the common-pool groundwater level.

International water law identifies the rights and obligations of sovereign states in relation to rivers, lakes, basins and aquifers that are bisected by, form, or underlie (in the case of groundwater) an international boundary line. It has recently begun to specifically address aquifers and groundwater; a handful of treaties and agreements have been concluded by countries with specific regard to transboundary aquifers and groundwater (see Chapter 12).

2.2.1 Water rights – from private property rights to administrative entitlements

In the majority of jurisdictions today, public or government ownership of groundwater is the norm, and groundwater extraction and use are based on administrative entitlements such as individual permits, licenses or concessions that, in many jurisdictions, are time-bound and qualified as to volumes and rates of extraction (Salman and Bradlow, 2006; Nelson and Quevauviller, 2016; Groundwater Governance Project, 2016c; Burchi, 2018a). However, in some jurisdictions with sizeable populations, such as India, Pakistan, the Philippines and more than half of the states in the USA, groundwater rights are tied to land ownership and groundwater is regarded as private property (Closas and Molle, 2016; Tarlock and Robinson, 2019).

The Groundwater Governance Project has stressed the importance of bringing the resource into the public domain, despite the legal and practical challenges this may entail, thus enabling the state to assign use rights and to regulate extractions in line with the societal goals of sustainability, equity and efficiency (Groundwater Governance Project, 2016c). The transition of groundwater from the private to the public domain, however difficult in view of the political overtones, can be accomplished successfully (as has been the case in jurisdictions like Argentina, the Australian states of New South Wales and Victoria, Germany, Italy, Morocco, South Africa, Tanzania, Uganda and Zimbabwe) through legislation or through the pronouncements of the highest courts (Burchi, 1999, 2012, 2018a; Burchi and Nanni, 2003; Salman and Bradlow, 2006). In Spain, on the other hand, the attempt to switch from private to public groundwater ownership decreed by the 1985 Water Law stranded eventually, despite a favourable ruling of the Supreme Court, and the pre-1985 private owners can still enjoy usufructuary rights. New rights are, however, allocated under public property. This illustrates problems of gaining acceptance for such ownership transitions (Closas and Molle, 2016).
In some jurisdictions, groundwater is regulated in conjunction with surface water, including rivers. In others, it forms part of framework laws. More and more countries are strengthening their legal framework regarding groundwater, ranking it on a par with surface water regimes, protecting quantity as well as quality, and involving stakeholders to balance both private and public interests (Mechlem, 2016). Box 2.3 shows an example from Australia, where ‘share-based’ allocations and abstraction rights were introduced in order to manage groundwater withdrawals. The use of such resource extraction regulation can better balance the habitat and environment-support function of groundwater and aquifers with productive uses and other needs (Burchi, 2018a; Smith et al., 2016).

Box 2.3 Shifting from ‘volume-based’ to ‘share-based’ water abstraction rights in New South Wales (Australia)

The Australian state of New South Wales introduced a Bulk Access Regime by virtue of the Water Management Act (2000). The quantum of groundwater extracted from aquifers has shifted from a volumetric allocation to a variable share in the available groundwater from a given aquifer. Relevant extraction licences are made up of two parts: a ‘share component’, which entitles the licence holder to a share in the available groundwater from the aquifer; and an ‘extraction component’, which entitles the licence holder to take groundwater at specified times, rates and at specified locations from the given aquifer. The former is the linchpin of this sophisticated management and governance regime, and is determined on the basis of water sharing rules (including of surface water) and water sharing plans negotiated in a participatory manner in cyclical ten-year aquifer management plans (see Chapter 10) (Burchi, 2018a).

Illegal emission and discharge of substances into water bodies or into the ground, or unlawful treatment of wastewater, in a way that cause major harm or risks to groundwater systems and/or human health, may be considered an offence or crime.

It is worth noting that in some instances there are conflicts between groundwater rights and surface water rights, for instance in the case of a stream that is drying up due to intense groundwater pumping nearby, and vice versa. A conjunctive management approach holds promise to deal jointly with groundwater and surface water rights, as has been done in New South Wales, in Australia (Box 2.3).

2.2.2 Regulating pollution

Point sources of pollution – industrial discharge of wastewater (notably including injection wells), solid waste handling that can affect groundwater resources, and municipal sewers – can be regulated through permits as well as through general effluent and/or ambient water quality standards. Direct discharge of hazardous or toxic waste to groundwater has been outlawed in some jurisdictions (Burchi, 2018a). Non-point source pollution from diffuse or indistinct sources requires prevention measures: regulation of land uses and/or imposition of best agricultural and environmental practices. Just as for point-source pollution, these measures include: prohibiting or limiting certain polluting and water-using activities; limiting the use of pesticides, herbicides and fertilizers (especially to reduce nitrogen and phosphorus build-up); restricting certain cropping patterns; reducing animal grazing intensity; reclaiming land; and managing drainage (Mechlem, 2016).

Illegal emission and discharge of substances into water bodies or into the ground, or unlawful treatment of wastewater, in a way that cause major harm or risks to groundwater systems and/or human health, may be considered an offence or crime. Sanctions and penalties may be stipulated for discharges without a permit or in violation of one, under criminal, civil or administrative law. Enforcement efforts and the prosecution of polluters, however, are often challenging due to groundwater’s invisible nature.
Groundwater governance takes place at multiple scales and geographic levels, including at regional (such as the European Union) and transboundary scales. In contrast, groundwater management occurs more often at the micro- and meso-level. A variety of social/institutional, organizational, financial, and technical arrangements, as well as commonly accepted rules, practices and norms, shape access to groundwater. It is on the micro- and meso-level that attention should be focused to address the needs of the poor (Cleaver et al., 2005).

There is a diversity of stakeholders/actors in groundwater-related institutions, representing the public and private sectors, (regional) water authorities or committees, utilities, river basin organizations, communities, informal groups, and society at large. Part of the role of these institutions is to implement policy and law, to translate decisions into actions and ensure that regulations, governance procedures and mandated enforcement are carried out (Smith et al., 2016) on the basis of acquired information and knowledge about the groundwater systems. Government agencies commonly have the mandate for multilevel groundwater governance and management activities, but in practice their role may vary considerably from a top-down regulatory approach to a permissive, 'laissez-faire' position (Kemper, 2007). The assigned or allowed roles (or focus) of stakeholders can also be very different. For instance, local norms and institutions may influence divisions of labour and functions, which in turn shape the sourcing and allocation of water. Further, community organisations can be faction-ridden, gender-segregated and exclusionary (Cleaver et al., 2005). Where groundwater users operate as individuals or communities (including self-supply in urban areas, as well as farmer-led irrigation schemes), there may be few, if any, formal institutions through which governance can extend.

Performance of public agencies varies in practice from virtually inactive to proactive and effective, depending on the enabling framework (including regulations); the level of awareness of the importance of groundwater and of political commitment; budgetary allocation and, consequently, management capacity; leadership; and/or mandates. An additional factor is commercial and political pressures to over-exploit groundwater, alongside the overall political situation and the position of the government in the eyes of the local population (including mutual trust or the lack thereof).

A national government unit can ensure both vertical integration between the national and local level, and horizontal cooperation across different levels and at the interface with other sectors. At the river basin or aquifer system level, stakeholder organizations can play important roles in coordinating groundwater planning and management. Because groundwater is perceived (often incorrectly) as a local resource, decentralized organizations (including municipalities) have a critical role. However, an aquifer can extend beneath more than one river basin, which complicates river basin and aquifer governance and integrated water resources management. Governments should endeavour to seek the systematic engagement of stakeholders with the objective to create permanent mechanisms for stakeholder involvement. This can be in the form of water users associations and other fora (Groundwater Governance Project, 2016c).

According to the Groundwater Governance Project (2016c), the vision for a ‘Global Framework for Action’ involves effective institutions with the capacity to look ahead and plan, to be inclusive and legitimate in the eyes of the stakeholders, and to come to credible and verifiable commitments, with the following components:

• sound organizational design with adequate capacity for policy-making and public administration of resource use and pollution protection;
• mechanisms for permanent stakeholder engagement and participation to foster socially responsible attitudes and actions on groundwater as a common-pool resource;
• procedures for cross-sector coordination and co-management to allow groundwater issues to be adequately addressed in the policies and practices of linked sectors; and
• institutions for the management of groundwater resources that traverse intranational and international boundaries (where relevant).
Institutions, by themselves, are not enough to properly govern intra- and international groundwater/aquifers. They need to be accompanied by national (and sometimes subnational) policies (see Chapter 10) and laws to guide these institutions in their work.

River basin organizations seldom contemplate groundwater, partly due to a lack of knowledge and capacity in aquifer assessment and partly because of a historical institutional separation of surface water and groundwater. As a result, river basin planning becomes incomplete. In several parts of the world, though, cooperation has started and this suggests some emerging best practice, modelled on approaches used in transboundary river basin management (Groundwater Governance Project, 2016c).
Chapter 3

Groundwater and agriculture

FAO
Matthew England

IWMI
Karen Villholth
This chapter provides an overview of the role of groundwater in agriculture, the sector with the largest use of the resource at a global level. As population and income growth drives demand for more intensive and higher-value food production, for which groundwater is well suited, irrigated agriculture, livestock and related industrial uses, including food processing, are becoming increasingly reliant on this resource (FAO, 2020).

3.2.1 Importance of groundwater for agriculture

Groundwater is a critical resource for irrigated agriculture, livestock farming and other agricultural activities, including food processing. Global groundwater withdrawals in 2018 were estimated to be approximately 978 km³ per year for all sectors, including agriculture (Aquastat, n.d.; Eurostat, n.d.; Margat and Van der Gun, 2013). Approximately 70% of global groundwater withdrawals, and even more in arid and semi-arid regions (Margat and Van der Gun, 2013), are used in the agricultural production of food, fibres, livestock and industrial crops (FAO, 2020). An estimated 38% of the lands equipped for irrigation is serviced by groundwater (Siebert et al., 2013). In the broader context, irrigated agriculture still accounts for 70% of freshwater withdrawals (FAO, 2020), and an estimated 90% of all water evaporation (Hoogeveen et al., 2015). Water use for food processing is also significant, up to 5% of global water use (Boretti and Rosa, 2019). These numbers highlight the overall water-intensive character of food production.

Groundwater abstraction has played a major role in accelerating food production from the 1970s onwards (FAO, 2020; Shah et al., 2007), especially in semi-arid and arid areas with limited precipitation and surface water. At the same time, it has sustained local to regional economies that are dependent on groundwater for livelihoods, economic growth and food security.

In order to meet global water and agricultural demands by 2050, including an estimated 50% increase in food, feed and biofuel relative to 2012 levels (FAO, 2017), it is of critical importance to increase agricultural productivity through the sustainable intensification of groundwater abstraction, while decreasing water and environmental footprints of agricultural production, which can be achieved, for example, through agro-ecology (Snapp et al., 2021) and better food policy and economic instruments (FAO, 2021).

To understand the diverse and dynamic impacts of agricultural groundwater use across the globe, Shah et al. (2007) distinguish between four types of socio-ecologies:

- **arid agricultural systems**, such as in the Middle East and North Africa, where groundwater is also increasingly in demand for higher-value non-agricultural uses;
- **industrial agricultural systems**, such as those in Australia, Europe and the western USA, where groundwater supports commercial precision agriculture⁷ and attracts relatively high financial resources for its management;
- **smallholder farming systems**, such as in South and increasingly Southeast Asia as well as the North China Plain, where groundwater irrigation is the mainstay of 1–1.2 billion, mostly poor farmers; and
- **groundwater-supported extensive pastoralism**, such as in much of Sub-Saharan Africa and Latin America.

⁷ Precision agriculture comprises the use of information and communication technology tools, including global positioning systems, satellites, drones, sensors and aerial images that provide farmers with site-specific information to make management decisions (Lowenberg-DeBoer and Erickson, 2019). Determining soil and crop conditions, while minimizing impacts on wildlife and the environment, is at the root of precision farming. Although concentrated in high-income countries, some precision tools have great potential in low-income countries. Many of these applications have been limited to large-scale farming, but there are opportunities for small-scale farmers as well (FAO, 2020).
In regions where a perennial and reliable source of shallow groundwater exists, including in previously rainfed areas, groundwater has been and continues to be an important source for smallholder farmers (Villholth, 2013a; Shah, 2009; Giordano, 2006). It represents a relatively accessible, local, on-demand and perennial source of water for agricultural practices, which translates into reduced poverty, better food security, and improved livelihoods. Evidence from Asia two decades ago indicates that the proliferation of groundwater access promoted greater interpersonal, interclass, gender and interregional equity in access to irrigation when compared to large canal irrigation projects (Shah et al., 2007; Deb Roy and Shah, 2003; Van Koppen et al., 2002). Studies in Africa, Asia and Latin America show that when poor farmers attempt to improve their livelihoods through smallholder agriculture or livestock farming, groundwater and small pumps are commonly involved, which benefit women in particular (Villholth, 2013a; Shah et al., 2007; Van Koppen, 1998).

3.2.2 Regional comparison of groundwater-sourced irrigation

The area of land equipped for irrigation (including full control, equipped wetlands and spate irrigation) globally has more than doubled since the 1960s, from 139.0 Mha in 1961 to 325.1 Mha in 2013 (Table 3.1). Regional variation in the extent of the irrigated area is pronounced. Asia accounts for 72% of the global area equipped for irrigation, predominantly in South and East Asia, and 41% of its cultivated area is irrigated. Sub-Saharan Africa has the least irrigation development: the irrigated area accounts for 3.4% of the regional cultivated area.

Table 3.1: Irrigated areas per region and globally, including groundwater share

<table>
<thead>
<tr>
<th>Continent and region</th>
<th>Total area equipped for irrigation from surface or groundwater (Mha) (Faostat 1961–1996; Aquastat 1997–2013)</th>
<th>Irrigated area as % of total cultivated area (Faostat)</th>
<th>Groundwater irrigation (2013) (Aquastat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>1961</td>
<td>2013</td>
<td>1961</td>
</tr>
<tr>
<td>Africa</td>
<td>7.4</td>
<td>15.6</td>
<td>4.4</td>
</tr>
<tr>
<td>Northern Africa</td>
<td>3.9</td>
<td>7.4</td>
<td>17.1</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>3.5</td>
<td>8.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Americas</td>
<td>22.7</td>
<td>52</td>
<td>6.7</td>
</tr>
<tr>
<td>Central America and the Caribbean</td>
<td>17.4</td>
<td>1.7</td>
<td>6.7</td>
</tr>
<tr>
<td>North America</td>
<td>0.6</td>
<td>34.3</td>
<td>5.5</td>
</tr>
<tr>
<td>South America</td>
<td>4.7</td>
<td>16</td>
<td>6.8</td>
</tr>
<tr>
<td>Asia</td>
<td>95.6</td>
<td>232.6</td>
<td>19.6</td>
</tr>
<tr>
<td>Central Asia</td>
<td>9.6</td>
<td>13.2</td>
<td>16.2</td>
</tr>
<tr>
<td>East Asia</td>
<td>7.2</td>
<td>73.9</td>
<td>13.4</td>
</tr>
<tr>
<td>South Asia</td>
<td>36.3</td>
<td>98.0</td>
<td>19.1</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>34.5</td>
<td>22.8</td>
<td>29.7</td>
</tr>
<tr>
<td>Western Asia</td>
<td>8</td>
<td>24.7</td>
<td>11.7</td>
</tr>
<tr>
<td>Europe</td>
<td>12.3</td>
<td>21.4</td>
<td>3.6</td>
</tr>
<tr>
<td>Eastern Europe and Russian Federation</td>
<td>8.7</td>
<td>4.8</td>
<td>5.8</td>
</tr>
<tr>
<td>Western and Central Europe</td>
<td>3.6</td>
<td>16.6</td>
<td>1.9</td>
</tr>
<tr>
<td>Oceania</td>
<td>1.1</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Australia and New Zealand</td>
<td>1.1</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Pacific Islands</td>
<td>0.001</td>
<td>0.004</td>
<td>0.2</td>
</tr>
<tr>
<td>World</td>
<td>139.1</td>
<td>324.8</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Source: Data from Aquastat (n.d.) and Faostat (n.d.).
area, while in West Asia it accounts for 41%. Regions heavily reliant on groundwater for irrigation include North America and South Asia, where 59% and 57% of the equipped area use groundwater, respectively, while in Northern Africa it is 35% and in Sub-Saharan Africa only 5% (see Section 8.1.3).

3.2.3 Country comparison of groundwater-sourced irrigation
Countries with the largest area under irrigation include China (73 Mha), India (70 Mha), the USA (27 Mha) and Pakistan (20 Mha) (Aquastat, n.d.). The proportion of total groundwater abstraction used for irrigation varies significantly in these countries. India, as the largest groundwater user globally, at an estimated 251 km³ per year abstracted, uses 89% of its groundwater abstraction for irrigation. China is relatively less reliant on groundwater, with an estimated 54% of total groundwater abstraction going into irrigation on average, but with significant geographic disparities, with the North China Plain (see Section 8.4.4) being more critically reliant on groundwater compared to the southern regions (Liu et al., 2010). Other countries, such as Bangladesh, Iran, Mexico, Pakistan, Saudi Arabia and the USA, are also heavily reliant on groundwater for irrigation, with amounts of groundwater abstraction for irrigation ranging from 71 to 94% (Margat and Van der Gun, 2013) (Figure 3.1).

Figure 3.1 Estimated total groundwater withdrawal and the percentage for irrigation for selected countries in 2010

Source: Based on data from Margat and Van der Gun (2013).

3.2.4 The extent of conjunctive water use
Conjunctive use\(^8\) of groundwater and surface water in agriculture is significant. It typically supports intensification within existing surface water irrigation areas, like in South Asia, where it enables perennial cropping and salinity control (Shah, 2009). The evolution of conjunctive use is typically not managed or planned, but rather a coping mechanism for farmers when established surface water systems fail to secure perennial freshwater access. There is little

\(^8\) Conjunctive water use refers to combined use of surface and groundwater to meet crop water demand (Shah et al., 2006).
consistent reporting of conjunctive use (Siebert et al., 2010), but census data in the USA (Dieter et al., 2018), China and India (Evans and Dillon, 2018; Ministry of Water Resources of India, 2017) indicate continued expansion.

3.2.5 Economic contribution of groundwater to agriculture

The economic contribution of groundwater in agriculture has been estimated at about US$210–230 billion per year globally, with gross productivity of US$0.23–0.26 per m³ abstracted (Shah et al., 2007). Water productivity, in terms of crop yield per unit of water applied, is generally higher, up to a factor two, for groundwater than for surface water. This is primarily due to groundwater being available on demand, its proximity to fields, and the fact that it is normally self-managed. This allows farmers to invest more heavily in other crop inputs, like fertilizers, pesticides and seeds, making their farming activities more attractive, more lucrative and less risky (Bierkens et al., 2019; Smilovic et al., 2015; Shah, 2007). However, the overall economic contribution and water productivity may appear low in comparison with other water-using sectors due to a combination of relatively high water consumption per unit of production and low agricultural commodity prices. In the context of economic growth and increased urbanization, this often results in agriculture having to give up water for urban and industrial uses, due to their generally higher value added per unit of water use (Molle and Berkoff, 2009).

3.2.6 Groundwater for livestock

The volumes of groundwater used for livestock⁹ drinking water are small in comparison to the volumes used to irrigate fodder crops for livestock (Shah et al., 2007). The irrigated production of fodder accounts for 98% of water (surface and groundwater) used for livestock, with the remaining 2% of water being used for drinking and cooling (Mekonnen and Hoekstra, 2012). Globally, an estimated 264 km³ of surface and groundwater per year is used for fodder production, equating to about a fifth of total agricultural water consumed and less than a third of water used for food crops (Heinke et al., 2020).

Rangeland under human-managed permanent meadows and pasture, mostly rainfed, covers almost 33 million km² of the Earth’s surface, an estimated 70% of all agricultural land (Faostat, n.d.). The total number of livestock more than tripled, from 7.3 billion units in 1970 to 24.2 billion units in 2011 (FAO, 2018a). Intensification of livestock production is associated with a concentration of feed and water demand, especially in industrial farming, often associated with intensified pressure on land and in-situ water resources, for example in irrigated fodder cultivation under zero-grazing systems (IPES-Food, 2018).

Many arid and semi-arid rangelands depend entirely on access to groundwater to sustain drinking water for cattle. Groundwater well structures encourage stocking ratios higher than the rangeland carrying capacity in terms of natural vegetation for grazing, and also concentrate livestock around boreholes. The environmental sustainability of rangelands can be severely disrupted by the introduction of boreholes with power-driven pumps (Shah et al., 2007). In Somalia and northern Kenya, boreholes have enhanced water security, while also encouraging overstocking, resulting in disputes over water and pasture rights as well as the exclusion of vulnerable communities (Gomes, 2006).

Pastoralism plays a crucial role in supporting livelihoods across large parts of Sub-Saharan Africa (Giordano, 2006). While groundwater abstraction may be less intensive in livestock rangelands, land degradation due to livestock may have significant impacts on the recharge of groundwater and the quality of the same (Meglioli et al., 2013).

⁹ Livestock is used in a broad sense to cover all domestic animals regardless of age, location or purpose of breeding. Non-domesticated animals are excluded under this definition unless they are kept or raised in captivity. Livestock included are large and small quadrupeds, poultry, insects (bees) and larvae of insects (silkworms) (FAO, 2018a).
3.3 Impacts of agriculture on groundwater quantity

3.3.1 Groundwater depletion attributed to irrigation

Depletion of groundwater is often attributed to agricultural withdrawals. Depletion leads to a multitude of externalities, including drying up of groundwater-dependent wetlands and watercourses via reduced baseflows (see Chapter 6) and compaction of compressible earth layers, with ensuing land subsidence, downward migration of low-quality groundwater, and saline intrusion into aquifers and surface water systems along coastal plains.

Terrestrial observations and satellite data have demonstrated, or made plausible, that numerous aquifers are being exploited at rates that are inducing rapid depletion and associated social and environmental externalities. This includes several of the world’s 37 major aquifer systems (Konikow, 2011; Gleeson et al., 2012; Scanlon et al., 2012a; Richey et al., 2015; Gong et al., 2018; Shamsudduha and Taylor, 2020) (Figure 3.2). High abstraction rates for irrigated agriculture are concentrated in arid and semi-arid regions, where population growth and expansion of irrigated areas have led to rapid growth in water demand.

Figure 3.2 Groundwater table decline in a selection of the world’s major aquifers

Groundwater exploitation has been driven by supply-push factors, such as its capacity to provide flexible, on-demand irrigation to support wealth-creating agriculture (Shah et al., 2007; Gleeson et al., 2012) and the easy availability of inexpensive pumps, drilling technologies and energy, often underpinned by government support and subsidy programmes. Demand-pull factors have also contributed, arising from the need to provide more food to increasing urban and rural populations.

The most notable depletion due to agricultural withdrawals occurs in continental aquifers associated with plains and coastal margins. Localized depletion in minor alluvial, coastal, deltaic and island aquifers (which are not shown in Figure 3.2) can also be partially attributed to agricultural withdrawals, leading to groundwater scarcity and pollution as well as saline intrusion, which threaten the potable water supply and limit agricultural production (Margat and Van der Gun, 2013).

Aquifers that are decoupled from contemporary recharge, notably those located in arid groundwater-dependent areas, present special and particularly alarming cases of groundwater depletion, as stored groundwater is permanently removed while the aquifer receives no or insignificant natural replenishment under the current climate (Bierkens and Wada, 2019) (Box 3.1).
Such non-renewable aquifers, receiving a negligible rate of recharge on the human timescale, require long-term strategies for planned depletion, in which alternative measures to secure basic water supply, while transforming the economy to a less water-intensive one, are essential. The time horizon over which to achieve such goals is a critical planning parameter, but it is associated with large uncertainty, as the absolute storage capacity and the economic feasibility of abstraction of finite aquifers remain uncertain (Foster and Loucks, 2006). Many parts of renewable aquifers are likely subjected to irreversible depletion as well, as refilling them from natural recharge, or even enhanced recharge, is infeasible. This may be because of compaction and subsidence of the aquifers, or because the natural refilling of the aquifers would be impossible owing to the extended time that would be required, let alone the external water resources needed to refill them artificially.

Unabated groundwater depletion in agricultural areas is becoming an issue of increasing concern regionally and globally, as it threatens to undermine food security, basic water supply, environmental integrity and climate resilience. This vexing issue sees limited progress, requiring increased management and governance capacity at multiple integrated levels and in intersectoral approaches (OECD, 2016) (see Chapters 2, 11 and 12).

Box 3.1 Groundwater depletion in Egypt

A notable development in the last decade is the proliferation of high-capacity and efficient borewells that are able to access groundwater hundreds of metres deep. Egypt began intensive groundwater development for irrigation in the 1960s through the New Valley project, tapping non-renewable groundwater resources of the Nubian Sandstone Aquifer system in the Western Desert of the country (Powell and Fensham, 2016). Subsequent projects and plans have accelerated the rate of irrigation expansion supplied by intensive groundwater abstraction. For instance, the Developing Southern Egypt project, 1997–2017, included the creation of 216,000 ha of irrigated area in the Toshka area in the southeast of the Western Desert. The project used surface water from the Nile River and groundwater from the Nubian Sandstone Aquifer, through borewells reaching depths of 200–1,200 m. From 1997 to 2006, groundwater levels dropped by up to 13.8 m in parts of the aquifer. Further plans to irrigate an additional 10,500 ha solely from groundwater through 50 borewells is expected to lead to further lowering of groundwater levels by 15 m (Sharaky et al., 2018). Critical surface expressions of the aquifer, in terms of artesian desert springs and oases, that have supported ancient civilizations and livelihoods, are now compromised as a result of this intensification of water and land use (Powell and Fensham, 2016).

Groundwater models that incorporate land use changes and estimates of withdrawals and recharge are used to track groundwater depletion (Konikow, 2013). Verifying the scale and magnitude of depletion trends using remote sensing by monitoring water storage changes in the Earth's crust, through NASA's Gravity Recovery and Climate Experiment (GRACE) satellite mission, remains challenging (Famiglietti, 2014). This is largely due to the coarse resolution of the gravity anomalies used to infer water storage changes (Vishwakarma et al., 2021). Modelled estimates suggest that between 2000 and 2009, global groundwater depletion for all uses was in the order of 113 km³/year (Döll et al., 2014), while other models suggest volumes in the order of 304 km³/year for 2010, of which about 75% was attributed to agriculture (Dalin et al., 2017; Wada, 2016). In practice, quantifying aquifer storage depletion at the global scale is still conjectural, as boundary, recharge and leakage conditions remain dynamic and uncertain. However, models increasingly include measured piezometric heads as a valuable indicator of storage changes, providing more certainty in estimates of depletion of local and regional aquifers (Haacker et al., 2016).
It is increasingly recognized that the virtual water embedded in crop products and their global redistribution via international trade is critical for understanding and managing sustainable water abstraction levels globally (Chapter 1). It is estimated that about 11% (or 25 km³/year) of global groundwater depletion is embedded in international crop trade (Dalin et al., 2017), supporting food security and economic growth, but also significantly contributing to large-scale depletion of aquifers overlaid by productive land. Wheat, maize, rice, sugarcane, cotton and fodder are the principal crops contributing to groundwater depletion. These crops are also heavily traded, indicating highly unsustainable water footprints\(^\text{10}\) (of which groundwater is a large share) from intensive export of crops for food, fodder and fibre consumption by humans and livestock (Mekonnen and Gerbens-Leenes, 2020). Five countries account for about 70% of the unsustainable water footprint: China, India, Iran, Pakistan and the USA. Of the total unsustainable water footprint, 90% was for food and fodder crops, while 10% was for fibre crops, rubber and tobacco (Mekonnen and Gerbens-Leenes, 2020).

Shallow groundwater tables can present both opportunities and constraints for cultivation. On the one hand, shallow water tables can be problematic to agriculture due to the risk of waterlogging resulting from rainfall or irrigation in areas with inadequate natural or artificial drainage. This can lead to progressive soil salinization, notably in dry regions. On the other hand, shallow controlled water tables can be favourable to agriculture as they ensure continuous water availability for optimizing crop yields, even during extended dry periods. Smallholder farmers throughout Africa and Asia are reliant on seasonal and perennial shallow groundwater for cultivation (Pavelic et al., 2013; Pavelic et al., 2012; Shah, 2009).

While most inhabited arid and semi-arid areas of the world, including areas that used to have a good water endowment (Box 3.2), are experiencing groundwater depletion today, evidence shows that other regions, for instance Northern Europe, under current climate scenarios are facing net groundwater accumulation, seasonally or over several years, through longer periods of sustained higher-than-normal rainfall, potentially leading to waterlogging and flooding. This can cause significant challenges for agriculture and calls for proactive shallow groundwater management, like in the United Kingdom (Macdonald et al., 2008). The Netherlands is naturally prone to flooding and is constantly managing groundwater levels through artificial drainage and pumping (Zeeberg, 2009). In large parts of the Netherlands, shallow water tables have for centuries been artificially controlled, keeping groundwater tables close to crop/vegetation-optimal levels. Similarly, other low-lying countries like Denmark are reliant on widespread artificial sub-surface tile drainage in regions with clayey soil, which controls groundwater levels and keeps the soil and cropping conditions workable whilst protecting infrastructure, including roads (Kidmose et al., 2013).

\[^{10}\] The water footprint is considered 'unsustainable' if it is above the available renewable blue water and violates the environmental flow requirements (Mekonnen and Gerbens-Leenes, 2020).
Types of pesticides commonly used in agriculture include insecticides, herbicides and fungicides (Schreinemachers and Tipraqsa, 2012). When improperly applied or disposed of, they can pollute soil and water resources with carcinogens and other toxic substances, while their degradation products can be hazardous to the terrestrial and aquatic biosphere, as well as to human health (Tang et al., 2021; Sharma et al., 2019). The global market in pesticides is worth more than US$35 billion per year (FAO, 2018a). Contamination with organic micro-pollutants, like pesticides, in agricultural areas is less documented in emerging economies. However, where the issues have been investigated in vulnerable socio-economic environments with intensive agriculture, results have shown the presence of contaminants in excessive concentrations (Wentworth et al., 2021), indicating an emerging environmental and health hazard of critical concern.

Box 3.2 Surface water irrigated agricultural lands with shallow water table – the case of Pakistan

The Indus basin aquifer in Pakistan holds in storage at least eighty times the volume of freshwater held in the country’s three largest dams. Yet the country is on the brink of a severe groundwater crisis (Lytton et al., 2021). Pakistan is the fourth-largest user of groundwater, responsible in 2010 for 6.6%, and in 2017 for 6.4% of the global groundwater abstraction (Margat and Van der Gun, 2013, Aquastat, n.d.), whilst occupying 4.6% of the total groundwater-irrigated area of the world (Bhatta and Smedema, 2007). The extensive use of groundwater in the country started in the 1960s, when large drainage wells were installed under government-funded Salinity Control and Reclamation Projects (SCARPs) to control waterlogging and salinity problems in 2.6 Mha of the irrigated lands, particularly in the Punjab province (Qureshi, 2020). Over time, shallow groundwater use was increasingly adopted by farmers as a way to expand irrigated areas, crop production and incomes, while coping with droughts. More secure water access helped increase crop yields by 50–100%. By 1980, the area irrigated by groundwater had surpassed the area irrigated with surface water (see graph below), while substantial parts of the cultivated land are in effect irrigated conjunctively, by combining the two, partially to control the generally higher salinity in groundwater. In short, Pakistan has over a period of 60 years turned from a surface water-dependent country to a groundwater-dependent country, and from a groundwater surplus country to a country with significant issues of groundwater overdraft, exacerbated by increasing salinity issues due to the use of poor-quality groundwater for irrigation. Approximately 21% of the irrigated area is affected by salinity, threatening the country’s food security, as irrigated land is responsible for more than 90% of its total grain production (Qureshi, 2020).

Historical development of groundwater- and surface water-irrigated areas in Pakistan

Source: Qureshi (2020, fig. 4, p. 6).

Types of pesticides commonly used in agriculture include insecticides, herbicides and fungicides (Schreinemachers and Tipraqsa, 2012). When improperly applied or disposed of, they can pollute soil and water resources with carcinogens and other toxic substances, while their degradation products can be hazardous to the terrestrial and aquatic biosphere, as well as to human health (Tang et al., 2021; Sharma et al., 2019). The global market in pesticides is worth more than US$35 billion per year (FAO, 2018a). Contamination with organic micro-pollutants, like pesticides, in agricultural areas is less documented in emerging economies. However, where the issues have been investigated in vulnerable socio-economic environments with intensive agriculture, results have shown the presence of contaminants in excessive concentrations (Wentworth et al., 2021), indicating an emerging environmental and health hazard of critical concern.
Excessive accumulation of salt in groundwater through brackish drainage and seawater intrusion (Mateo-Sagasta and Burke, 2010) has increased with irrigation expansion, further exacerbated by climate change. Irrigation can mobilize salts accumulated in dryland soils, which are then transported by drainage water to aquifers and other receiving water bodies (FAO, 2018a). Major water salinity problems in agricultural land have been reported in Argentina, Australia, China, India, Pakistan, Sudan, the USA and many countries in Central Asia (FAO, 2018a; Shahid et al., 2018; Thorslund and Van Vliet, 2020). Estimates indicate that between 20–23% and 25–33% of the global land area under cultivation and irrigation, respectively, are saline and hampered in terms of agricultural productivity (Shahid et al., 2018; Jamil et al., 2011), principally in arid and semi-arid regions.

The use of antibiotics for intensive livestock farming has increased with the growing global demand for meat (Manyi-Loh et al., 2018). It is largely unregulated in developing countries, with China as the leading registered producer and consumer of antibiotics within livestock farming (Maron et al., 2013). While antibiotics protect animals from infections, they also generate antibiotic-resistant bacteria that can be pathogenic to humans and that are very difficult to treat (Prestinaci et al., 2015). They are typically transmitted to the environment, including groundwater, through animal waste. A widespread prevalence of antibiotic-resistant bacteria has been documented at the global level (Manyi-Loh et al., 2018), with groundwater contamination reported in China (Xiao et al., 2016), Kenya (Wahome, 2013), South Africa (Carstens, 2013) and the USA (Li et al., 2015).

3.5.2 Economic, health and environmental impacts

The global environmental and social costs of agriculture-derived surface and groundwater pollution are estimated to exceed billions of dollars annually (OECD, 2012a). In the USA, pesticide contamination of groundwater and eutrophication of freshwater are estimated to cost US$1.6–2 and US$1.5–2.2 billion per year, respectively (Pimentel, 2005; Dodds et al., 2009). The global annual cost of salt-induced land degradation in irrigated areas is estimated at US$27.3 billion through the loss of crop production (Qadir et al., 2014).

Groundwater pollution from agriculture has direct negative impacts on human health. For instance, high levels of nitrates in water can cause methaemoglobinemia (blue-baby syndrome) in infants (Majumdar, 2003; Knobeloch et al., 2000). Whereas water quality standards for pollutants are generally stricter in terms of protecting human health than for the environment, nitrate is an example where the levels required to protect water bodies from eutrophication are lower than for methaemoglobinemia (Hinsby et al., 2008). Pesticide accumulation in water and the food chain, with demonstrated ill effects on ecosystem and human health, led the multilateral Stockholm Convention on Persistent Organic Pollutants to ban certain persistent pesticides (such as DDT and many organophosphates) in 2001 (Tang, 2013). However, a number of banned pesticides are still used in least developed countries, causing acute and likely chronic health effects (Ngowi et al., 2012).

3.5.3 Pollution control in the agricultural sector

Evidence suggests that laws and regulations to prevent or limit diffuse groundwater pollution from agriculture, and especially their enforcement, are generally weak (Groundwater Governance Project, 2016a). There has been more progress in groundwater laws and regulation than in effective implementation and enforcement, which represents a significant obstacle to sustainable groundwater management. In many countries, regulations are poor or non-compliance is pervasive, with groundwater pollution continuing largely unchecked. Attempts to regulate diffuse pollution through pollution fines have not worked, as it is difficult to identify polluters (OECD, 2017a). Economic instruments for pollution control of surface and groundwater are increasingly employed. These include taxes, ‘set-asides’ (the conversion of agricultural land to natural uses) and payments to limit production or the intensity of land use. Taxes include polluter payments, dedicated environmental taxes, and taxes on technologies, products and inputs that have adverse ecological consequences (e.g. pesticides), according
to the level of hazard, or conversely subsidies on environmentally friendly technologies. Well-known approaches for reducing pollution, such as ‘the polluter pays principles’ are possible, through green taxes on pesticides and fertilizers, for example, but they are not often applied, are priced too low to act as deterrents, or have unintended distributional impacts, as poor farmers will be hit harder by such taxes (OECD, 2011; 2017a).

A combination of pollution control measures, including regulation, economic incentives, as well as information, awareness campaigns and data dissemination, is considered to work more effectively than regulations alone (OECD, 2008). Policies addressing water pollution in agriculture should be part of an overarching agriculture and water policy framework at the national, river basin and aquifer scale. Policies to promote information and awareness to change farmer behaviour and incentivize the adoption of Best Management Practices (FAO, 2018a) for agriculture are important to preventing pollution at the source (Liu et al., 2018). For instance, benchmarking can promote behavioural change among farmers by showing them how they perform in comparison to other farmers, in terms of the application of fertilizers and pesticides. Promoting Corporate Social Responsibility within the private sector is also advocated (FAO, 2018a).

3.6 Groundwater and energy linkages in irrigation

Groundwater abstraction and energy use are closely interrelated. Rural electrification has been a principal driver for groundwater development in India (Shah, 2009; Smith and Urpelainen, 2016). Concentration of groundwater development is notable when rural power grids are extended into areas that would otherwise rely on diesel generation or wind energy, such as evidenced in Ethiopia, Kenya and South Africa (Vilholth, 2013a). Conversely, power utilities can face significant losses in revenue when declining groundwater levels and rising irrigation costs lead to diminishing pumping, as evidenced in the central USA (Rhodes and Wheeler, 1996).

Advances in solar technology have witnessed the development of Solar-Powered Irrigation Systems (SPIS), adopted at scale to service farming operations. These range from large-scale commercial operations, e.g. in Australia, to small-scale farmers in areas with relatively shallow groundwater, notably in remote locations producing high-value crops, such as in Afghanistan (FAO, 2018b). The proliferation of SPIS, either as grid-connected or off-grid solutions, can be attributed to the declining cost of solar panels over the last decade, in addition to government subsidy programmes, which have made such technology a viable option, particularly for small-scale farmers (FAO, 2018b). SPIS provide reliable, affordable and climate-smart energy for irrigation (Box 3.3). However, there is a risk of unsustainable water use if SPIS implementation is not adequately managed and regulated (FAO, 2018b). Once the systems are installed, there is no cost per unit of power and thus no financial incentive for farmers to save electricity for groundwater pumping. SPIS can therefore lead to over-abstraction of groundwater, and low field application efficiency. In some cases, farmers sell water to their neighbours at a profit, increasing overall groundwater withdrawals (FAO, 2018b; Closas and Rap, 2017). The linkage between energy subsidies and groundwater pumping for irrigation are well established, for instance with evidence from India (Scott and Sharma, 2010) (Box 3.4), Iran (Jamali Jaghdani and Kvartiuk, 2021) and Mexico (Scott, 2013).
Box 3.4 Groundwater and energy in India

India is the world’s largest user of groundwater. It has an annual draft of around 251 km³, 89% of which is used for irrigation (Margat and Van der Gun, 2013 – Figure 3.1), withdrawn through an estimated 20 million wells and tubewells. An estimated 60% of the irrigated area in India is served by groundwater (Shah, 2009). Groundwater-led irrigation was instrumental in the success of the Green Revolution in India from the 1960s. However, it has become apparent that gains in irrigated agricultural production have progressively led to a significant decline in groundwater levels in parts of the country, particularly in northwestern and peninsular southern India (Shah, 2009). Currently, India’s water crisis can be largely traced to the expansion of groundwater irrigation, a trajectory set on course by India’s food and electricity policy since the late 1970s. The food policy guaranteeing cheap food to consumers dictates the need to keep input prices low, including the level of electricity tariffs for pumping groundwater. Reduced electricity tariffs or free electricity to agriculture, as exist in many Indian states, coupled with assured state or government procurement of crops, encourage farmers to grow water-intensive crops, such as sugarcane, including in semi-arid regions with low natural recharge. This is responsible for unprecedented groundwater depletion in large parts of India (Mukherji, 2020).

Groundwater overwithdrawal in India can be traced to a lack of coherence between water, energy and food policies. Hence, solutions to India’s groundwater problems should be positioned within a broader water–energy–food nexus context (Shah et al., 2012). Indirect management of groundwater through electricity policies have been attempted in many states in India. This has ranged from metering agricultural electricity connections and charging farmers near-commercial rates for irrigation (e.g. in the state of West Bengal – Mukherji et al., 2009); to rationing electricity to farmers to a limited number of hours in a day, made possible by bifurcation of electric feeders into agricultural and domestic feeders (e.g. in the state of West Bengal – Mukherji et al., 2009); to rationing electricity to farmers to a limited number of hours in a day, made possible by bifurcation of electric feeders into agricultural and domestic feeders (e.g. in the states of Gujarat, Karnataka and Punjab – Shah et al., 2008; Mukherji, 2017). Both these measures, the pricing and the rationing of electricity, are meant to reduce demand for groundwater by giving price and scarcity signals, respectively (Sidhu et al., 2020). More recently, concerns about high carbon emissions from India’s groundwater pumping and about the mounting subsidy burden on the electricity utilities, have led to pilots of Solar-Powered Irrigation Systems (SPIS). Grid-connected SPIS are being promoted to incentivize farmers to pump less groundwater while selling electricity back to the grid rather than using it for pumping groundwater (Shah et al., 2018), but evidence of whether grid-connected SPIS actually reduce groundwater pumping is still not available. Estimates of greenhouse gas emissions from groundwater pumping relative to the total national emissions from energy use range from 0.5% in China (Wang et al., 2012) and 3.6% in Mexico (Scott, 2013) to 8–11% in India (Rajan et al., 2020). Compounding the situation, methane embedded in deep anoxic groundwater, released as groundwater is pumped to the surface, may also add to this budget (Kulongoski and McMahon, 2019).
Chapter 4

Groundwater for human settlements

IWA
Stephen Foster

UN-Habitat
Pireh Otieno

RWSN*
Kerstin Danert

IAH
Alan MacDonald**

* Ask for Water GmbH on behalf of the Rural Water Supply Network (RWSN)
** Affiliated with the British Geological Survey
4.1 Introduction

Groundwater exhibits numerous benefits as the basis for water supply development by public utilities

4.1.1 Scope of topic
The chapter gives an overview of groundwater supply for domestic uses (including drinking water) in both urban and rural settings, and is intimately linked with the United Nations Sustainable Development Goals (SDGs) 3 and 6 for 2030. Water supply can be provided by public utilities, commercial operators, individual householders and community organizations. While the major part of urban water is generally supplied by water utilities, private urban self-supply from groundwater has grown markedly in many developing country cities. The role of groundwater in rural water supply is the other major focus of the chapter, noting that waterwells11 are often the only year-round reliable source of village drinking water. The chapter also examines the hazards of groundwater use and the issue of groundwater pollution due to inadequate urban and rural sanitation.

4.1.2 Brief historical evolution
Since the earliest times, humankind has met its need for good quality water from subterranean sources (Margat and Van der Gun, 2013). Springs, the surface manifestation of underground water, played a key role in social development, and the first waterwells were sunk initially in parts of Asia, the Middle East and Ethiopia to depths of up to 50 metres.

During the 20th century, there was a major boom in waterwell construction for urban water supply. Major advances in waterwell drilling, pumping technology, energy access and geological knowledge allowed for faster drilling of deep boreholes, and for the extraction of larger quantities of water. Shallow wells, installed with affordable technology and fitted with handpumps, were developed for community supplies in rural areas. Groundwater thus became a key natural resource supporting human well-being and economic development – but one that was still widely misunderstood, undervalued, poorly managed and inadequately protected (IAH, 2015).

4.1.3 Data on groundwater abstraction
Global groundwater withdrawals were estimated to have exceeded 900 km³/year by 2010, with waterwells and springheads providing some 36% of potable water supply (Döll et al., 2012; Margat and Van der Gun, 2013). The groundwater dependence of innumerable cities appears to be intensifying, such that nearly 50% of the global urban population are believed today to be supplied from groundwater sources (Foster et al., 2020a). In the case of the European Union (EU) and USA, groundwater provides the public water supply for 310 and 105 million people, respectively. However, comprehensive national statistics on groundwater pumping for human settlements are patchy (Table 4.1).

The social value of groundwater should not be gauged solely by volumetric withdrawals. This is because groundwater use brings major economic and health benefits, possibilities to scale on demand, high drought reliability, generally good quality requiring minimal treatment (IAH, 2015), and time saved by women and girls in locations where they are the main water fetchers. However, very high rates of urban population growth are generating unprecedented demand for water supply and sanitation, creating an enormous challenge for urban planning.

11 The term waterwell is used generically here to cover all forms of dug wells, shafts, boreholes, borewells, tubewells, galleries and adits used for water abstraction.
Table 4.1 Selected country data on urban groundwater abstraction

<table>
<thead>
<tr>
<th>Country</th>
<th>Population (millions)</th>
<th>Urban population (millions)</th>
<th>Utility water supply (Mm³/year)</th>
<th>Utility groundwater supply (Mm³/year) and proportion</th>
<th>Selected cities with major groundwater use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>209.3</td>
<td>178.2</td>
<td>16 740 **</td>
<td>3 164 (19%)</td>
<td>Natal, Ribeirão Preto, São Luís do Maranhão</td>
</tr>
<tr>
<td>Chile</td>
<td>16.4</td>
<td>14.7</td>
<td>1 267</td>
<td>498 (39%)</td>
<td>Santiago, Coquimbo, Concepción</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>4.9</td>
<td>4.0</td>
<td>652</td>
<td>522 (80%)</td>
<td>San José, Puntarenas, Liberia</td>
</tr>
<tr>
<td>Mexico</td>
<td>129.2</td>
<td>102.1</td>
<td>14 230 *</td>
<td>7 000 (49%)</td>
<td>Mexico City, Mérida, San Luis Potosi, León</td>
</tr>
<tr>
<td>Paraguay</td>
<td>6.4</td>
<td>3.9</td>
<td>362 *</td>
<td>272 (75%)</td>
<td>Asunción, Villarica</td>
</tr>
<tr>
<td>USA</td>
<td>324.5</td>
<td>270.7</td>
<td>58 390 *</td>
<td>21 001 (36%)</td>
<td>Miami, Tampa, Phoenix, Oklahoma</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>24.3</td>
<td>12.2</td>
<td>321 **</td>
<td>n/a</td>
<td>Abidjan, Bouake</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>105.0</td>
<td>21.3</td>
<td>810 *</td>
<td>n/a</td>
<td>Addis Ababa, Dire Dawa</td>
</tr>
<tr>
<td>Kenya</td>
<td>49.7</td>
<td>13.2</td>
<td>495 **</td>
<td>n/a</td>
<td>Mombasa, Nakuru</td>
</tr>
<tr>
<td>Senegal</td>
<td>15.9</td>
<td>7.4</td>
<td>98 *</td>
<td>n/a</td>
<td>Dakar, St. Louis</td>
</tr>
<tr>
<td>Tanzania</td>
<td>42.9</td>
<td>9.9</td>
<td>328 **</td>
<td>n/a</td>
<td>Dodoma, Arusha, Tanga</td>
</tr>
<tr>
<td>Zambia</td>
<td>17.1</td>
<td>7.3</td>
<td>290 **</td>
<td>60 (21%)</td>
<td>Lusaka, Kabwe</td>
</tr>
<tr>
<td>India</td>
<td>1 339.2</td>
<td>455.3</td>
<td>56 000 **</td>
<td>13 328 (24%)</td>
<td>Lucknow, Chennai, Chandigarh, Indore</td>
</tr>
<tr>
<td>Pakistan</td>
<td>197.0</td>
<td>70.9</td>
<td>9 650 **</td>
<td>2 934 (30%)</td>
<td>Islamabad, Lahore, Rawalpindi, Multan</td>
</tr>
<tr>
<td>China</td>
<td>1 409.5</td>
<td>817.5</td>
<td>79 400 *</td>
<td>7861 (10%)</td>
<td>Tianjin, Beijing, Handan, Shenyang</td>
</tr>
<tr>
<td>Indonesia</td>
<td>964.0</td>
<td>145.2</td>
<td>23 800 **</td>
<td>21 420 (90%)</td>
<td>Jakarta, Semarang, Yogyakarta</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>95.5</td>
<td>33.4</td>
<td>1 206 *</td>
<td>555 (46%)</td>
<td>Ho Chi Minh City, Da Nang, Hanoi</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>164.7</td>
<td>59.3</td>
<td>3 600 **</td>
<td>2 603 (72%)</td>
<td>Dhaka, Khulna, Chattogram</td>
</tr>
<tr>
<td>Denmark</td>
<td>5.8</td>
<td>5.1</td>
<td>230</td>
<td>230 (100%)</td>
<td>Copenhagen, Odense, Aarhus, Aalborg</td>
</tr>
<tr>
<td>France</td>
<td>67.0</td>
<td>53.9</td>
<td>1 774</td>
<td>1 064 (60%)</td>
<td>Paris, Caen, Limoges, Le Mans, Poitiers</td>
</tr>
<tr>
<td>Germany</td>
<td>83.1</td>
<td>64.1</td>
<td>1 606</td>
<td>1 188 (74%)</td>
<td>Hamburg, Berlin, Munich, Hanover</td>
</tr>
<tr>
<td>Hungary</td>
<td>9.7</td>
<td>7.0</td>
<td>257</td>
<td>244 (95%)</td>
<td>Budapest, Miskolc</td>
</tr>
<tr>
<td>Italy</td>
<td>60.3</td>
<td>42.6</td>
<td>1 391</td>
<td>1 210 (87%)</td>
<td>Rome, Milan, Turin, Perugia</td>
</tr>
<tr>
<td>Netherlands</td>
<td>17.4</td>
<td>15.8</td>
<td>489</td>
<td>298 (61%)</td>
<td>Utrecht, Eindhoven, The Hague</td>
</tr>
<tr>
<td>Poland</td>
<td>37.2</td>
<td>22.8</td>
<td>576</td>
<td>357 (62%)</td>
<td>Warsaw, Wroclaw, Poznań, Cracow</td>
</tr>
<tr>
<td>UK</td>
<td>66.8</td>
<td>55.5</td>
<td>3 558</td>
<td>1 245 (35%)</td>
<td>Portsmouth, Hull, Cambridge, Brighton</td>
</tr>
</tbody>
</table>

Note: ** / * private self-supply from groundwater is a major or significant issue, respectively.

Source: Based largely on UNICEF/WHO (2019) data for 2017, which often underestimate groundwater abstraction and provide no data on private in-situ waterwell use.

Table 4.2 Summary of the benefits of groundwater sources to water service utilities

<table>
<thead>
<tr>
<th>Groundwater assets</th>
<th>Water supply benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Widespread distribution, with direct access in many outlying districts</td>
<td>• Development usually involves low capital and few recurrent costs (except in a few hydrogeological settings), which can be staged in cases of rising demand</td>
</tr>
<tr>
<td>• Natural quality is generally excellent, requiring minimal treatment (except where affected by anthropogenic pollution or by natural contamination – Foster et al., 2020b)</td>
<td></td>
</tr>
<tr>
<td>• Huge natural reservoirs that can be used for long-term water storage</td>
<td>• High level of water supply security in drought and river pollution episodes</td>
</tr>
<tr>
<td>• Buffered against rainfall variability unlike surface water sources</td>
<td></td>
</tr>
</tbody>
</table>

Source: Foster et al. (2020a).
4.2 Urban water supply

4.2.1 Public systems

Groundwater exhibits numerous benefits as the basis for water supply development by public utilities (Table 4.2), with its typically high natural quality requiring only precautionary disinfection before entering distribution systems (Box 4.1).

Urban centres underlain and/or surrounded by high-yielding aquifers usually have better public water service levels and lower water prices – because of the potential to expand water supply production incrementally in response to rising demand at modest cost (IAH, 2015). Thus, most settlements located in favourable hydrogeological settings will initially have significant dependence on groundwater for their water supply (Figure 4.1) and significantly increased water supply security during extended drought or surface water pollution incidents (Foster et al., 2018).

Box 4.1 An example of successfully managed urban groundwater abstraction in Hamburg (Germany)

Hamburg has a population of some 2.2 million served by a municipally owned water utility. In 1964, after a long transition, it switched from filtered river water to groundwater for its water supply. Today, it operates about 470 waterwells pumping some 120 million m³/year from the shallow alluvial aquifer and a deeper formation. Nine of the corresponding capture areas have legal status as groundwater protection zones, but three are located outside the city’s jurisdiction and their protection has to be negotiated with neighbouring authorities. In some cases, conflicts have arisen since the shallow aquifer is vulnerable to agricultural and industrial pollution, while the deeper aquifer is threatened by salinization from adjacent salt domes.

The water utility thus maintains its own network of about 1,400 monitoring boreholes, which provide a full and dynamic picture of groundwater quality. The data are stored in a digital information system, which also contains groundwater level data. In cooperation with the government geological agency, a numerical groundwater model has been elaborated covering 4,500 km² with over 3,000 production waterwells and calibrated with over 7,000 monitoring boreholes. This is used for wellfield management decision-making, water rights applications, interaction with industrial groundwater abstraction, refinement of groundwater protection areas and control of any serious pollution.

Source: Foster et al. (2020a).

Indirectly, groundwater contributes to urban poverty reduction by allowing water utilities to develop sources at much lower cost and allow lower connection charges. However, many urban poor live in peri-urban settlements, which are unplanned and lack legal status, and city planners often impede the provision of public infrastructure (power and water services) to such areas (IAH, 2015).

Looking forward, the widespread presence of groundwater resources will allow rapid development of utility waterwells as the ‘hub’ of new decentralized systems of water service provision for the fast-developing outer urban districts with populations of 20,000–50,000 (IAH, 2015). Such systems could minimize infrastructure costs, energy use and water losses, with deep waterwells generally being well suited to be their water sources. In order to reduce subsurface contaminant loads from in-situ sanitation, waterwell construction should be combined with the separation/recovery of urine to serve as fertilizer and the recovery of faeces for energy generation (i.e. valuing wastewater as a resource). Moreover, a special effort will be needed on the ground to control other sources of urban groundwater contamination (such as petrol stations, small-scale motor shops, garages and dry-cleaning laundries).
Within the limits of larger cities, there is often not enough groundwater available to meet the water demand sustainably (Figure 4.2). Where high-yielding aquifers are present in the immediate hinterland, the development of ‘external wellfields’ is an attractive option, compared to long-distant import of surface water resources. The capture area of these wellfields should be protected against pollution and overexploitation by land use controls and waterwell regulation, respectively.

Figure 4.2 Typical trend in the evolution of urban water supplies

Source: Adapted from Foster and Hirata (2012, fig. 2, p. 22).
The presence of major aquifers in the vicinity of cities can enhance urban water supply resilience, because they provide a 'natural buffer' against variability of river flows and surface reservoir levels, as a result of the very large volume of groundwater held in storage (Foster et al., 2020a; 2020c). The water stored in aquifers is also naturally protected from evapotranspiration losses and less vulnerable to pollution than surface water.

Box 4.2 Planned conjunctive use scheme to conserve a critical aquifer in Lima

Lima extends across the hyper-arid outwash fans of the Rímac and Chillón Rivers. Groundwater recharge arises from riverbed infiltration (recently enhanced), irrigation canal seepage, excess irrigation to agricultural and amenity land (reducing), and leakage from water supply mains and sewers. During the 1960s–1980s, the city grew rapidly to over 8 million and its water demand increased to more than 2,000 Ml/day in 1997. The waterworks on the Rímac River were expanded to a capacity of 860 Ml/day, although maximum production is not possible at times of extreme concentrations of suspended solids or during periods of drought. Of the total water supply in 1997, 1,050 Ml/day was derived from groundwater (including 720 Ml/day from 380 utility waterwells) with a resultant water table decline of 1–5 m/year, resulting in costly side effects.

Major studies were made to optimize conjunctive use through the concerted micro-measurement of domestic water use to reduce wastage, the reduction of groundwater abstraction in defined critical areas, additional Andean surface water transfers to the Rímac River of up to 260 Ml/day, improved flexibility of water distribution to allow most users to be supplied by either source, and riverbed recharge enhancement over 6 km of the Rímac River. Institutional arrangements empowered the water utility to act on behalf of the government. The success of the conjunctive use scheme is witnessed by the recovery of 5–30 m of the water table between 1997 and 2003 (following a decline of 10–40 m in the preceding 10 years), with water utility abstraction reducing from 265 Mm³/year in 1997 to 135 Mm³/year by 2009, while maintaining the capacity for higher production in the short term.

Source: Adapted from Foster et al. (2010a, Box B, p. 10).

Managed conjunctive use of groundwater and surface water can enhance water supply security, and has been successfully implemented in a wide range of cities, such as Lima (Box 4.2). A recent project in Delhi captures excess monsoon river flow to recharge the aquifer supplying drinking water to the city, which is another form of conjunctive use.

In Brazil, for example, cities supplied with only surface water were almost twice as likely to be impacted by the major 2013–2017 drought as those with significant groundwater use (Foster et al., 2020a). In 70 Indian cities and towns, groundwater provides a 48% share of the urban water supply (Alam and Foster, 2019), but in Chennai (Box 4.3), for example, water supply security has been undermined by excessive aquifer exploitation. The inherent prejudice of some water utility staff for developing and operating large surface-water reservoirs can result in failure to make strategic use of local groundwater resources, which was an aggravating factor in the recent Cape Town water supply crisis (Olivier and Xu, 2019).

4.2.2 Private and community self-supply

The term self-supply is used to refer to water supply investments that are financed by users themselves (Foster et al., 2010b; Oluwasanya et al., 2011; Foster and Hirata, 2012; Coulibaly et al., 2014). In developing economies, most self-suppliers use groundwater and share their supply with neighbours (Sutton and Butterworth, 2021), and self-supply from groundwater provides a rapid solution in areas where it is technically feasible to those who can afford it.
Investments in private waterwells unlock significant finance for water supply access, and documented evidence as well as recognition of this phenomenon is growing (Foster et al., 2010b; Grönwall, 2011; Butterworth et al., 2013; Sutton, 2017, Grönwall and Danert, 2020). Nevertheless, private groundwater use tends to pass under the radar of official in-country water supply statistics (Danert and Healy, 2021), or the phenomenon is not recognized at all by the government (IAH, 2015).

Box 4.3 Groundwater helps survival in severe water supply crises in Chennai (India)

Chennai has a population of 8.6 million and had to face an acute water supply crisis in 2017–2019 when its main reservoirs almost dried up as a result of a persistent drought. By June 2019, their combined reserves had shrunk to 0.1% of total storage capacity and the water utility could only supply 520 Ml/day, mainly from local groundwater, against a total demand of 830 Ml/day. The city has more than 420,000 private waterwells, but the water table has fallen significantly over large areas, causing saltwater intrusion due to long-term aquifer overexploitation and limited recharge in the recent poor monsoons.

These pressures forced Chennai to deploy some 5,000 tankers with a capacity of 9,000 l each, making 5–6 trips per day to supply groundwater from surrounding rural areas to the water utility, totalling 200–300 Ml/day. However, a local history of poor water resource management has fuelled conflicts between urban and rural populations.

Source: Alam and Foster (2019).

The use of private waterwells for urban self-supply has ‘mushroomed’ in recent years, especially in South Asia, Latin America and Sub-Saharan Africa (Foster et al., 2010b; Grönwall et al., 2010; Alam and Foster, 2019). The practice usually commences as a ‘coping strategy’ in the face of irregular or inadequate piped water supply, and then continues in perpetuity as a ‘cost reduction strategy’ to avoid paying higher water tariffs. It is a proven way of unlocking household-level investment in access to water.

Private waterwell construction costs in most hydrogeological settings will be in the range of US$2,000–20,000, but are considerably higher (US$30,000–45,000) where deep boreholes (of 200–300 m) are required. In the latter case, private waterwell ownership will remain the preserve of the wealthy and it is not a ‘pro-poor’ proposition. While the practice reduces the pressure on water utility supplies, it can also have serious impacts on utility cash flows and investment cycles (Foster et al., 2018). There is a clear need for some regulation of urban waterwell self-supply, and without regular quality monitoring, it will always be risky, but nevertheless users appear to be superficially content with their supplies.

Research into urban self-supply from groundwater has revealed that:

• in India, an estimated 340 million dwellers depend primarily on self-supply sources from groundwater (Sutton and Butterworth, 2021), and many medium-sized cities are highly dependent on domestic self-supply from groundwater, which can amount to 40–60% of water-supply provision (Alam and Foster, 2019);

• domestic self-supply from groundwater in Brazil amounts to about 35% of total supply to São Paulo in drought conditions (despite not being recognized by the authorities and the city not being underlain by a major aquifer) and nationally there are at least 2.5 million private waterwells which represent 6–7 times the annual investment in water supply by government agencies (Foster et al., 2020a).
The case of Nigeria is particularly significant in view of its very large and rapidly growing urban population and high levels of self-supply. By 2009, some 38–43 million of the total urban population (75–80 million) were estimated to be dependent on private waterwells, despite the fact that the coverage of public water supply also expanded. In the city of Lagos alone, about 20% of the 18–20 million population are served by utility water supply, with about 50% owning private boreholes and another 30% obtaining water from these sources (Healy et al., 2017).

Informal slum settlements and the poorer peri-urban communities can only gain access to groundwater in those case where:

- community-based organizations use social capital and political connections to secure funding for non-reticulated waterwells from government programmes;
- non-governmental organizations provide non-reticulated waterwells to collection standposts; or
- low-cost dug wells can be constructed to tap exceptionally shallow water-tables, with the handicap of being much more vulnerable to faecal and chemical pollution (Grönwall, 2016; Lapworth et al., 2017).

In addition, the settlements of marginalized and displaced people, both on a temporary and permanent basis, require special mention. These settlements often have a high population density but fall between the urban and rural categories. The construction of well-designed waterwells is vital in these cases. Good examples are the Turkish cities receiving large numbers of Syrian refugees and the Rohingya refugee camps in Bangladesh. Such settlement areas source water from deep waterwells constructed by aid or relief agencies (Box 4.4).

Box 4.4 Deep waterwell provides clean water for Rohingya refugees in Bangladesh

In recent years, approximately 1 million Rohingya refugees have migrated to a settlement near Cox’s Bazaar, just north of the Myanmar border with Bangladesh. Despite high local rainfall, providing clean water to these displaced people is difficult, since the shallow aquifers in the area are contaminated by human excreta. The challenge was overcome by drilling a deep waterwell tapping into the Tipam Sandstone Aquifer at depths of 100–300 m. Energy to pump the water up is generated by 187 solar panels. After precautionary chlorination, the water is stored in 6 tanks of 95,000 litres each, for gravity-fed distribution to the inhabitants.

Source: IOM (2019).

4.2.3 Urban use drivers and trends

The present-day drivers of urban groundwater use are the accelerating rates of urbanization, increasing per capita water use, higher ambient temperatures and reduced river-intake security due to water pollution and climate change, and the relatively low cost of waterwell construction and operation (IAH, 2015). Another practice that requires mention is the import of private tanker supplies to urban areas from waterwells that are mainly located in neighbouring rural areas.

In tropical Africa, the regional trend is that the rate of improving urban water supply has actually decreased between 1990 and 2015 (Banerjee et al., 2008). The urban population that remains ‘unserved’ with improved water supply can be usefully divided (Oluwasanya et al., 2011) into:
those (70–80%) who are living physically close to the existing infrastructure but are not willing or able to be connected, because of either prohibitive connection costs and/or the insecurity of tenure at their dwelling place;

those (20–30%) who live outside the existing infrastructure area, where the capital cost for the water utility to extend its coverage is too high, given the poor prospect of capital cost recovery unless subsidized supply is guaranteed; and

the remainder, whose continuity and reliability of utility water supply are so poor that they have to make regular recourse to alternative solutions (such as expensive bottled water or unreliable water tankers).

4.3.1 Improved village water sources

The nature of groundwater makes it highly suited to dispersed water supply for populations living in rural areas, and it is often the most cost-effective way of providing a secure water supply to villages. This is especially the case in Sub-Saharan Africa and South Asia where the rural population is large but dispersed. Groundwater will continue to be the predominant source of household water for the rural population in developing nations (Foster et al., 2008). Community hand-pump waterwells began to be adopted in the 1980s, during the United Nations International Drinking Water and Sanitation Decade, and led to a steady increase in access to safe water for rural people in low-income countries (Arlosoroff et al., 1987).

The volumes of water needed to meet the demands of rural villages are small and can readily be provided by small-diameter boreholes, dug wells or sometimes springheads, with water abstraction by handpumps or small motorized pumping equipment of low capacity (0.2–1.0 l/sec). Such water supplies are not normally reticulated to dwellings, although there is a widespread tendency for people to want to drill and operate private waterwells on their own premises. Hand-pumped water supplies can be abstracted from most rock types with the right expertise, but reticulated supplies for large villages (> 1.0 l/sec) can be more challenging to develop.

The use of groundwater includes both so-called ‘improved sources’ of adequate sanitary completion and also a large number of unimproved sources (Table 4.3), whose microbiological quality is at significant risk from the direct ingress of polluted surface water. The proportion of improved sources is steadily increasing, owing in no small measure to the application of guidance provided via the Rural Water Supply Network.12

A recent study in Ethiopia, Malawi and Uganda found that more than 90% of rural groundwater supplies had the inorganic quality that made it suitable for drinking, although there are particular geological areas where elevated arsenic and fluoride levels are a hazard. One of the greatest benefits of groundwater is its resilience to climatic variation. Groundwater is not reliant on the last 1–2 years of rainfall, but integrates rainfall over years and decades. Research into the performance of rural groundwater supplies in Ethiopia during the recent drought of 2015–2016 found that boreholes equipped with handpumps outperformed every other water supply (MacDonald et al., 2019).

4.3.2 Rural use statistics

Statistics on rural groundwater use are largely derived from estimates of rural population and per capita domestic water use for non-reticulated supply. While in northern Europe, water utilities provide reticulated supplies to many villages, no such services exist in the rural areas of most countries in the world, and groundwater plays a key role in meeting this water demand reliably.

12 www.rural-water-supply.net/en
Private waterwells also play an important role in providing for domestic use around the world (Healy et al., 2020). For example, Mali has over 170,000 private traditional family waterwells and it is estimated that in Ethiopia, Malawi and Zambia, more than 85% of households rely on private waterwells for their drinking water supply (Sutton and Butterworth, 2021).

4.3.3 Future challenges

Rural community groundwater supplies are not without their challenges. Recent research in Ethiopia, Malawi and Uganda has shown that less than 50% of water boreholes were functioning reliably and about 25% were contaminated with pathogens (MacDonald et al., 2019). The reasons are complex and include engineering and design issues, along with deficient long-term maintenance and management of the water service.

Emerging solutions involve prioritizing maintenance of existing services, increasing the quality of materials, and improving the design and construction through awareness-raising and capacity-building. Persistent contamination of rural groundwater supplies with pathogens is estimated to affect about 30% of the total installations. Although disinfection treatment is possible, it is rarely feasible at village level. The coexistence of on-site sanitation and groundwater supply is a serious concern for shallow sources, particularly in more densely populated villages. Inadequate quality of borehole construction is a pervasive issue, which allows the direct ingress of contaminated surface water (Danert et al., 2020).

Groundwater provides the only feasible and affordable way to extend basic water access to unserved rural populations in much of the world. Private waterwells also play an important role in providing for domestic use around the world (Healy et al., 2020). For example, Mali has over 170,000 private traditional family waterwells and it is estimated that in Ethiopia, Malawi and Zambia, more than 85% of households rely on private waterwells for their drinking water supply (Sutton and Butterworth, 2021).

<table>
<thead>
<tr>
<th>Category</th>
<th>Definition</th>
<th>Source examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved private source</td>
<td>• Immediately available drinking water from improved water source</td>
<td>• Private borehole of sound sanitary completion on household premises</td>
</tr>
<tr>
<td></td>
<td>• Free from faecal and priority chemical contamination</td>
<td>• Reticulated/piped water supply from protected borehole</td>
</tr>
<tr>
<td>Basic community source</td>
<td>• Community drinking water from an improved source</td>
<td>• Borehole or springhead of sound sanitary completion close to the households</td>
</tr>
<tr>
<td></td>
<td>• Collection time under 30 minutes for a roundtrip, including queueing</td>
<td></td>
</tr>
<tr>
<td>Limited source</td>
<td>• Drinking water from an improved source</td>
<td>• Distant and congested borehole or springhead of adequate sanitary completion</td>
</tr>
<tr>
<td></td>
<td>• Collection time greater than 30 minutes for a roundtrip, including queueing</td>
<td></td>
</tr>
<tr>
<td>Unimproved source</td>
<td>• Drinking water from unprotected source</td>
<td>• Unprotected dug well or springhead</td>
</tr>
</tbody>
</table>

Table 4.3

Drinking water service ladder with groundwater use

Groundwater provides the only feasible and affordable way to extend basic water access to unserved rural populations in much of the world. Still, 11% of the global population lacks access to basic water services (UNICEF/WHO, 2019) and delivering sustainable groundwater services to these people is a major priority. The shallow borehole equipped with a shallow handpump still has a major role to play in the rapid upscaling of village water services, and needs to be accompanied by an improved attention to maintenance. The ultimate objective is household access to water, which would see a gradual move from community handpumps to reticulated systems, but again mainly based around groundwater. The use of solar energy for pumping has the multiple potential benefits in terms of water security and net zero emissions. But this shift relies on boreholes being able to supply higher yields (>100 m³/d) sustainably, which will require substantial investment in understanding hydrogeology for appropriate borehole siting.
4.4 Environmental concerns

4.4.1 Threats to sustainability
The main challenges to the sustainable use of groundwater for urban supply are:

- absolute resource constraints in the case of the larger cities;
- frequent quality degradation caused by: inadequate in-situ sanitation, leaky storage of hydrocarbon fuels, casual disposal of industrial and municipal effluents, and uncontrolled solid-waste dumps (IAH, 2015; Lapworth et al., 2017);
- a tendency to overexploit groundwater resources within urban areas where the water utility is a major abstractor, which can be accompanied by land subsidence impacting the urban infrastructure and saline-water intrusion; and
- presence of elevated levels of natural trace contaminants (e.g. arsenic and fluoride) in some groundwater locally, especially in South Asia and East Africa (Foster et al., 2020b).

Urban settlements are often developed on coastal plains, and the population of coastal zones worldwide is predicted to grow to 1 billion in the coming decades. In coastal areas, the over-exploitation of groundwater resources seriously exposes aquifers to large-scale saline-water intrusion, a phenomenon that will be further exacerbated by climate change-induced sea level rise.

Environmental problems associated with groundwater exploitation can be divided into those relating to:

- land subsidence due to compaction of aquitards and aquifer materials, causing serious settlement of building foundations and increased flood risk in coastal cities, as a result of the overexploitation and falling water table of urban aquifers (e.g. in Bangkok and Beijing); and
- groundwater flooding, causing inundation or uplift of buried structures (deep basements, transportation tunnels, etc.), arising from water table rebound following the cessation of groundwater pumping from urban aquifers.

Other specific issues, like the conservation of wooden-pile foundations, require a policy that aims to keep urban water tables in shallow urban aquifers within a specified limited range.

Box 4.5 Major groundwater dependency but with significant hazards in Lusaka

Lusaka has grown rapidly from 0.5 million in 1978 to 2.8 million in 2018. It has long been dependent on local groundwater for its water supply. In 2018, the water utility operated 228 waterwells to provide about 140 Ml/day, with a river treatment plant providing a further 80 Ml/day. The water utility is still plagued by high water losses and poor revenue collection, but has taken a ‘pro-poor initiative’ by drilling stand-alone boreholes to supply water kiosks at a subsidized tariff of US$0.25/m³ (40–70% of the normal tariff).

In addition, there are thousands of private waterwells with a total abstraction of up to 300 Ml/day. In low-income peri-urban areas, most households still rely on shallow dug wells where the water table is less than 3 metres deep, but the dolomitic limestone formation they tap into (while high-yielding) is very vulnerable to pollution from urban wastewater and industrial effluents. Pit latrines are the predominant form of sanitation, and in these ground conditions, they form a serious hazard to groundwater quality and cause the frequent cholera outbreaks. Some large-scale projects to extend the main sewer network and wastewater treatment capacity are underway, but in the unplanned peri-urban slums these are difficult and costly to implement.

Source: Adapted from Foster et al. (2020c, Box 1, p. 126).
Increased rainfall intensity arising from climate change has in some areas resulted in exceptional rates of groundwater infiltration, as well as perched aquifers, giving rise to subsurface flooding in areas that have not previously experienced this problem.

There are, of course, broader environmental concerns arising from intensive groundwater abstraction for whatever purpose. The reduction in discharges to rivers as baseflow, as well as to dependent wetlands, is principal amongst these.

4.4.2 Urban sanitation and drainage issues
Urbanization greatly modifies the ‘groundwater cycle’ – with some benefits and numerous threats. Urban sanitation and drainage arrangements exert a major influence on groundwater recharge rates and quality.

Careful consideration of groundwater resource sustainability and pollution vulnerability are required when planning urban sanitation and drainage. Where unconfined groundwater systems are in use for urban water supply, it will also be important to route stormwater drainage from roofs and paved areas to soakaways so as to maximize groundwater recharge. However, transitioning from in-situ sanitation to sewered systems in established urban areas is not widely feasible in developing cities because the dense population affords little space and the cost is often prohibitive. Given these constraints, in-situ sanitation is increasingly accepted as the norm, and its design and management have improved to ensure safe faecal sludge handling and disposal (Peal et al., 2020).

The impact of inadequate or inappropriate sanitation on groundwater varies widely with the pollution vulnerability of different aquifer systems and the types of faecal sludge and solid waste involved. The most serious problems arise in urban areas where main-sewer coverage is low and most domestic faecal waste is discharged into pit latrines. It will usually impact the marginalized the most (women and girls are often disproportionately more at risk of disease due to pathogens and toxins as a result of their exposure to wastewater). In cities in developing countries and larger informal settlements, the majority of the total population are served by in-situ sanitation (septic tanks, various types of latrine and cesspit, and even open defecation), and this will result in significant pollution of shallow aquifers by nitrates, community chemicals and pharmaceuticals. In the most vulnerable aquifers, pollution by pathogenic organisms will also occur. This is well documented for some cities (Box 4.5).

In those locations in the developing world where main-sewer coverage forms the bulk of the sanitation infrastructure, arrangements for wastewater disposal and reuse remain widely inadequate, with significant pollution risks for peri-urban alluvial aquifers. There is a pressing need to avoid agricultural or amenity irrigation with wastewater in the capture areas of public waterwells, unless it is subjected to tertiary treatment.

Where solid waste disposal is by landfill, and especially where these are poorly designed and operated, the groundwater pollution load will locally be more varied and potentially more toxic, if landfills do not have impermeable liners and effluent management. While locally, more serious types of groundwater pollution can occur as a result of the inadequate management of industrial wastewater, pollution arising from the domestic and municipal sector are a far more widespread threat in those contexts where in-situ sanitation and solid-waste landfill predominate.

4.4.3 Groundwater-related energy consumption
The operation of motorized waterwell pumps is a significant energy consumer, and pumping costs also start to escalate in overexploited aquifers with continuously falling water tables. However, the consumption of energy by waterwell pumps is still modest in comparison to the energy requirements associated with complex water treatment plants and long-distance transfer of surface water resources. Thus, provided that groundwater...
pollution by nitrates, solvents and pesticides can be kept to a minimum, the total energy requirement for the operation and distribution of groundwater sources is much lower than for surface water sources (except where the latter are gravity-fed).

Where electrification is widespread, the most common energy source for groundwater pumping remains electricity, but in Sub-Saharan Africa and some other regions, there is still heavy reliance on diesel-engine pumps or handpumps. Recent years have seen the greatly increased use of solar panels as a source of energy for groundwater pumps, and this is likely to continue in the future.

The cost of energy provision for urban groundwater supply is normally recovered by the water tariffs, commonly with a subsidy for social-minimum volumes recuperated through higher charging for larger volumes (see WWAP, 2019, Chapter 5).

Several key stakeholders play a role in groundwater abstraction for the water supply of human settlements. These range from the national agencies responsible for groundwater resources and water supply, to the corresponding local municipalities and even individual waterwell owners.

The national agencies have the responsibility for ensuring:

- the basic regulation of groundwater abstraction;
- adequate coordination on groundwater between national actors, basin agencies, local groundwater user organizations, and aid/relief organizations, as appropriate;
- effective mechanisms for groundwater monitoring and regulation enforcement;
- horizontal coordination with other departments on groundwater; and
- support for operational arrangements in transboundary aquifers.

Local municipal agencies will need to:

- ensure that the local water permit system is functioning;
- stress the need for attention to the operation and maintenance of waterwells;
- coordinate solid-waste and wastewater management to protect groundwater;
- consult and support local groups that work on sanitation and waste management;
- communicate the need to prevent groundwater pollution to farmers; and
- encourage education/vocational training institutes (including youth groups) to include water supply and groundwater management in their curricula.

1. Groundwater clearly plays a major role in urban water supply, as well as a critical role in water supplies to rural villages and settlements of displaced people worldwide, but certain factors tend to make this role difficult to quantify precisely. The reasons include the current failure to clearly differentiate types of water supply sources in national and international databases, and the fact that private waterwell abstraction often remains irregular or illegal and falls outside the radar of public databases.

2. There is a pressing need for systematic urban groundwater studies to become a routine element of urban planning at a detailed scale, to mitigate unnecessary conflicts between public and private groundwater use, to ensure sound solutions to the water supply of displaced person settlements, and to avoid unforeseen and costly environmental and social problems related to groundwater supply.
3. Water utilities need to put a much more consistent emphasis on protecting their critical waterwell/springhead sources through promoting land use restrictions (on agricultural cropping and housing development) in their groundwater capture zones, in the interest of safeguarding public health and reducing the cost of water supply.

4. Of special concern in relation to the sustainability and cost of groundwater for human water supply are the impacts of groundwater overexploitation for irrigated agriculture and groundwater pollution from agriculture and industry (see Chapters 3 and 5). Of equal importance are the effects of pollution due to inadequate or inappropriate sanitation affecting groundwater sources themselves, as well as the contamination risks caused by poor waterwell design and/or inadequate completion.

5. There is also an urgent requirement to promote full interaction on, and monitoring of, urban groundwater between the main stakeholders: water utilities, environmental agencies and municipal authorities, and local groundwater user organizations. The databases resulting from this joint monitoring activity should be open-access. There is a parallel need to establish stable long-term collaboration frameworks between urban water utilities and local academic research centres to improve the understanding of the groundwater resource.

There is a pressing need for systematic urban groundwater studies to become a routine element of urban planning at a detailed scale.
Chapter 5

Groundwater and industry

UNIDO
Helmut Krist and John Payne

With contributions from:
Christian Susan (UNIDO), Cate Lamb and Laureen Missaire (CDP)
The industry and energy sectors are usually well aware of what surrounds them at ground level and above. Such things as rivers, lakes and climate variability are perceptible, as are the risks they may present to the viability of companies. Yet the groundwater that lies underneath is often – literally – overlooked. This oversight is surprising as these sectors often rely on self-supply that in many locations has a groundwater component. Groundwater is available to provide a very useful and often underused resource for industry, but it has to be sustainably managed in concert with other stakeholders. It is a key resource for many industries, and contributes in this way to employment and economic growth.

Industries that withdraw groundwater include manufacturing, mining, oil and gas, energy generation, engineering, and construction. Industries with a high groundwater dependency via supply chains include the apparel and food and beverage sectors. Their combined withdrawals can lead to stronger competition/interactions between the different industries, as well as with other sectors, communities and the natural environment, with sometimes unforeseen consequences, such as extreme lowering of groundwater tables, pollution of groundwater and land subsidence (UNEP, 2019).

5.2.1 Quantity
Statistics relating to water abstraction and use in industry are notably scarce. Industry and energy account for 19% of global freshwater withdrawals (Aquastat, n.d.). This number refers to self-supplied water (which includes groundwater). The data also point to big geographic differences, with industrial withdrawal varying from 5% in Africa to 57% in Europe. However, Aquastat data are not parsed out into industrial groundwater withdrawals. Such data can only be found for some higher-income, industrialized countries. The United States Geological Survey (Dieter et al., 2018) shows that for self-supplied industrial use in the USA the total amount of water withdrawn has decreased significantly from 1985 to 2015 (Figure 5.1), while surface water is still the main source. According to another estimate, groundwater contributes 27% of the water withdrawn globally for manufacturing (Döll et al., 2012).13

The 15 countries with the largest estimated annual groundwater extractions in 2010 are shown in Table 5.1, clearly evidencing the wide range in groundwater extraction for industry, which varies from country to country from 1 to 48%.

13 According to 2020 CDP unpublished data, globally across all sectors, 39% companies reported having lowered their groundwater withdrawal compared to the previous year (2019), 30% reported it was about the same, and 24% reported having increased their withdrawals. This includes groundwater withdrawals from non-renewable and renewable sources for their direct operations (CDP, unpublished).
More recent data from 2015 (Table 5.2) show many of the same countries and their changes in absolute water withdrawal, with China and Indonesia more than overcoming any savings by other nations.

Table 5.1 Fifteen countries with the largest estimated annual groundwater extractions (2010)

<table>
<thead>
<tr>
<th>Country</th>
<th>Population 2010 (in thousands)</th>
<th>Estimated groundwater extraction 2010 (km³/year)</th>
<th>Groundwater extraction for irrigation (%)</th>
<th>Groundwater extraction for domestic use (%)</th>
<th>Groundwater extraction for industry (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>1 224 614</td>
<td>251.0</td>
<td>89</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>China</td>
<td>1 341 335</td>
<td>133.5</td>
<td>+87.8</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>USA</td>
<td>310 384</td>
<td>111.7</td>
<td>71</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>Pakistan</td>
<td>173 593</td>
<td>64.8</td>
<td>94</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Iran</td>
<td>73 974</td>
<td>63.4</td>
<td>87</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>148 692</td>
<td>30.2</td>
<td>86</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Mexico</td>
<td>113 423</td>
<td>29.5</td>
<td>72</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>27 448</td>
<td>24.2</td>
<td>92</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Indonesia</td>
<td>239 871</td>
<td>14.9</td>
<td>2</td>
<td>93</td>
<td>5</td>
</tr>
<tr>
<td>Turkey</td>
<td>72 752</td>
<td>13.2</td>
<td>60</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>Russia</td>
<td>142 985</td>
<td>11.6</td>
<td>3</td>
<td>79</td>
<td>18</td>
</tr>
<tr>
<td>Syria</td>
<td>20 411</td>
<td>11.3</td>
<td>90</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Japan</td>
<td>126 536</td>
<td>10.9</td>
<td>23</td>
<td>29</td>
<td>48</td>
</tr>
<tr>
<td>Thailand</td>
<td>69 122</td>
<td>10.7</td>
<td>14</td>
<td>60</td>
<td>26</td>
</tr>
<tr>
<td>Italy</td>
<td>60 551</td>
<td>10.4</td>
<td>67</td>
<td>23</td>
<td>10</td>
</tr>
</tbody>
</table>

Source: Margat and Van der Gun (2013).

Table 5.2 The nine countries with the largest annual industrial water withdrawal (km³/year)

<table>
<thead>
<tr>
<th>Country</th>
<th>2015</th>
<th>Absolute change from 1965</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>248.4</td>
<td>-55.5</td>
</tr>
<tr>
<td>China</td>
<td>133.5</td>
<td>+87.8</td>
</tr>
<tr>
<td>Russia</td>
<td>39.6</td>
<td>-7.9</td>
</tr>
<tr>
<td>Canada</td>
<td>33.1</td>
<td>-2.9</td>
</tr>
<tr>
<td>Germany</td>
<td>32.6</td>
<td>-5.2</td>
</tr>
<tr>
<td>Indonesia</td>
<td>24.7</td>
<td>+24.3</td>
</tr>
<tr>
<td>France</td>
<td>21.6</td>
<td>-2.9</td>
</tr>
<tr>
<td>India</td>
<td>17.0</td>
<td>+1.8</td>
</tr>
<tr>
<td>Italy</td>
<td>16.3</td>
<td>+7.3</td>
</tr>
</tbody>
</table>

Source: Ritchie and Roser (2017), based on Aquastat.
The reduced availability of groundwater resources can be a limiting factor for industrial development, because some industries use more groundwater than surface water. In some cases, groundwater is used to preserve surface water resources for the local population – mostly in water-scarce regions – for their everyday food and drinking supplies. Examples include the textile finishing industry in Pakistan and other water-scarce regions. The textile finishing industry in Karachi is confronted with an extreme shortage of process water, and previously available groundwater sources are exhausted. The application of zero liquid discharge (ZLD) techniques is a possible solution to continue the operation of textile finishing processes.

Another example is the challenge facing the development of a new Tesla Factory in Brandenburg (Germany). Due to the region’s limited groundwater resources, the regional water utility raised concerns of how the project might affect drinking water supply, which in turn led to a discussion about regional groundwater availability (IGB, 2020). This example indicates that determining proper groundwater allocation is not just a problem confined to developing countries.

5.2.2. Manufacturing
In industry, groundwater is used for many different purposes, including the manufacturing, processing, washing, diluting, cooling and transporting of products. Furthermore, groundwater is used by smelting facilities, petroleum refineries, and by industries producing chemical products, food and paper products (CDC, n.d.). Some industrial operations place great reliance on groundwater, whereas others, such as mining, can also cause groundwater displacement or depletion through dewatering into other ecosystems, such as surface water systems.

In 2020, from 1,375 manufacturing companies worldwide disclosing to the CDP (formerly the Carbon Disclosure Project), more than half (54%) reported groundwater from non-renewable and renewable sources as being relevant for their direct operations. Of those, 46% have lowered their groundwater withdrawals, 32% maintained their withdrawals, and 21% increased their withdrawals from groundwater compared to 2019 (CDP, unpublished).

Process water
Various industrial processes make use of groundwater resources where surface water is limited in quantity but also where quality is important. Groundwater is often less contaminated than surface water and requires less treatment. Industries like textiles and garments, leather, and pulp and paper have a high specific water consumption. For example, the wet processing of 1 kg cotton fabric needs 250–350 litres of water (Kiron, 2014). The tanning industry has a specific water use of 170–550 litres per hide (Schwarz et al., 2017). Water withdrawal in European paper production for pulp, paper and board production was around 3,700 million m³ in 2012 (SpotView, 2018), of which 90% came from surface water, and 8.5% from groundwater sources. These processing operations often use self-supplied groundwater: this is seen not only in developing countries, which sometimes have inadequate monitoring, but also in industrialized countries like the USA.

The textile industry is a large groundwater user. In Bangladesh, for example, this sector supplies itself with groundwater for its different units of the wet processing facility, and therefore is in desperate need for efficient water management (Haque et al., 2021). Almost all dyes, specialty chemicals and finishing chemicals are applied to textile substrates from water baths/wet processes. In addition, most fabric preparation steps, including desizing, scouring, bleaching and mercerizing use aqueous systems and groundwater (Kiron, 2014).
As Table 5.3 shows, wool and felted fabrics processes are the most water-intensive textile operations (with wool processing having a median water use of about 280 l/kg). The figures also show that water consumption in this industry varies widely.

<table>
<thead>
<tr>
<th>Water use in textile processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing subcategory</td>
</tr>
<tr>
<td>Wool</td>
</tr>
<tr>
<td>Woven</td>
</tr>
<tr>
<td>Knit</td>
</tr>
<tr>
<td>Carpet</td>
</tr>
<tr>
<td>Stock/Yarn</td>
</tr>
<tr>
<td>Nonwoven</td>
</tr>
<tr>
<td>Felted fabrics</td>
</tr>
</tbody>
</table>

Source: Adapted from US EPA (1996, table 2-33, p. 65).

An example of a city where groundwater quality and quantity were adversely affected by rapid industrialization, a known problem especially in developing countries, is Tiruppur (India). The city is highly dependent on intensive textile processing activities, but also relies on groundwater as the main source for drinking water. Samples showed that the groundwater is contaminated with salts used in textile processing (Grönwall and Jonsson, 2017a).

Washing and cleaning

Many production processes need a large amount of water for washing and cleaning their products at the end of production, in order to separate residues of processing chemicals. These chemicals remain in the effluent and need treatment to protect the environment and human health. Specific data concerning the quantity of groundwater used for washing and cleaning purposes in the different industries are lacking.

Cooling

The use of groundwater for cooling purposes is very dependent on the location and type of industry and will therefore vary widely from country to country. Primary energy and power production are the biggest single users of industrial water. High-energy processes need large quantities of cooling water. For example, steel and metal smelters use 30 m³ of water per ton of steel, while refineries use 1.5 m³ of water to process 1 m³ of crude oil. In the USA, 15% of the process water used in refineries is sourced from groundwater (US Department of Energy, 2016).

5.2.3 Beverages and bottled water

The beverage, bottled and mineral water sectors are unique in that groundwater is a raw material that becomes the product. According to market research, the industry is expected to grow 8% annually (Facts & Factors, 2020). The sources of mineral water used for human consumption need special attention, as these watersheds and aquifers need to be protected against any type of microbiological and chemical pollution.

14 The International Energy Agency estimates that industry and energy (primary energy and power production) account for about 10% each of total water withdrawals globally (IEA, 2016a).
Large international food and beverage companies are in increasing competition and in dispute with local communities and municipalities over the amount that can be withdrawn without depleting local groundwater resources and affecting domestic and other supplies. For example, in the city of Guelph (Canada), citizens demonstrated against the renewal of the water withdrawing permit for Nestlé’s bottling plant in nearby Aberfoyle, which sources water from the same aquifer that feeds Guelph’s supply. The consequence was a moratorium on the permit (CBC, 2016). A response to solve upcoming conflicts regarding common groundwater resources may be the application of the international water stewardship standard (AWS, 2019).

According to CDP’s global data, in 2020, 72% of the disclosing beverages companies reported groundwater being relevant to its operations. From those, 26% reported their groundwater withdrawals were about the same as the previous year (2019), 42% were lower, 18% were increased and 8% were in their first year of measurements (CDP, unpublished).

5.2.4 Engineering and construction
Groundwater has a significant impact on engineering and construction. As with mining (see Section 5.4), it is inconvenient at best and a major issue at worst (too much groundwater in the wrong place at the wrong time) and, for these segments of industry, it is neither an asset nor a hidden resource. Underground construction, such as tunnels, frequently require either temporary or permanent dewatering. Deep excavations and buildings with large underground areas, such as basements and underground parking lots, face the same challenges, frequently exacerbated by the large volumes requiring removal and also by the water pressures that are the result of high local or regional heads. Unlike mining, which mainly occurs in more remote areas often with relatively untouched groundwater, construction is commonly carried out in urban areas, where the groundwater may already be polluted, requiring treatment upon dewatering and before discharge. Indeed, the question where to discharge the sometimes substantial amounts of water can prove challenging in populated areas and involve permitting and regulations. Moreover, both temporary and permanent dewatering can significantly lower groundwater levels, affect groundwater supply, and increase operation and maintenance costs.

In soil mechanics and foundation engineering, groundwater is a vital consideration. According to the principle of effective stress, the presence of groundwater affects the strength of the soil and the loads that can be borne. Moreover, fluctuations in groundwater levels (seasonal and sometimes as a result of dewatering) are particularly significant in affecting the stability of slopes. On a larger scale, aquifer depletion and lowering of groundwater levels can lead to serious land subsidence, as is evidenced in the well-known case of Jakarta, where subsidence rates of 1 to 20–28 cm/year have been observed in a few locations (Abidin et al., 2011). This leads to the need to replace and repair infrastructure and buildings – all engineering and construction tasks. In other locations, karst phenomena produced by the underground erosion of limestone (carbonate) rocks by acidic groundwater leaves caves and voids that can collapse, leading to building failures at ground level and loss of life. Sinkholes in Florida (USA) are a prime example.

5.3.1 Industrial threats to groundwater
The discharge and infiltration into the ground of untreated or only partly treated industrial effluents, by injection wells for example, can pollute groundwater and consequently affect other down-gradient uses for irrigation, drinking water and various industries. Negative impacts from soil contamination and leaching from non-engineered and old industrial dumpsites and legacy mines can lead to significant risks for environment and human health. This can occur even when industrial fallout of particulates in air emissions land on the ground and are subsequently transported to the groundwater by rainfall infiltration.
Industrial contaminants found in groundwater cover a broad range of physical, inorganic chemical, organic chemical, bacteriological and radioactive parameters. Some common groundwater contaminants, associated pollution sources and their effects are shown in Table 5.4.

Table 5.4
Common industrial groundwater contaminants by source

<table>
<thead>
<tr>
<th>Pollution source</th>
<th>Type of contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline filling stations and garages</td>
<td>Benzene, other aromatic hydrocarbons, phenols, some halogenated hydrocarbons</td>
</tr>
<tr>
<td>Solid waste disposal</td>
<td>Ammonium, salinity, some halogenated hydrocarbon, heavy metals</td>
</tr>
<tr>
<td>Metal industries</td>
<td>Trichloroethylene, tetrachloroethylene, other halogenated hydrocarbons, heavy metals, phenols, cyanide</td>
</tr>
<tr>
<td>Painting and enamel works</td>
<td>Alkylbenzene, tetrachloroethylene, other halogenated hydrocarbons, metals, some aromatic hydrocarbons</td>
</tr>
<tr>
<td>Timber industry</td>
<td>Pentachlorophenol, some aromatic hydrocarbons</td>
</tr>
<tr>
<td>Dry cleaning</td>
<td>Trichloroethylene, tetrachloroethylene</td>
</tr>
<tr>
<td>Pesticide manufacturing</td>
<td>Various halogenated hydrocarbons, phenols, arsenic</td>
</tr>
<tr>
<td>Sewage sludge disposal</td>
<td>Nitrates, various halogenated hydrocarbons, phenols</td>
</tr>
<tr>
<td>Leather tanneries</td>
<td>Chromium, various halogenated hydrocarbons, phenols</td>
</tr>
<tr>
<td>Oil and gas exploration/extraction</td>
<td>Salinity (sodium chloride), aromatic hydrocarbons</td>
</tr>
<tr>
<td>Metalliferous and coal mining</td>
<td>Acidity, various heavy metals, iron, sulphates</td>
</tr>
</tbody>
</table>

Hydrocarbons are one of the most common groundwater contaminants. They either float or sink in groundwater depending on their density. Chlorinated hydrocarbons, such as those used as solvents or for dry cleaning, can be carcinogenic. Only a small amount can be enough to contaminate large volumes of groundwater beyond safe guidelines. Heavy metals, such as hexavalent chromium from the plating industry, are also dangerous. Others, such as arsenic, can occur naturally in groundwater and limit its suitability for industrial use.

5.3.2 Addressing industrial groundwater pollution

The industrial and mining sectors have a strong potential for increasing water use efficiency, stimulating water recycling and reuse, and limiting water pollution. To reduce or avoid negative impacts of industrial groundwater use, the techniques and methods of Resource Efficient and Cleaner Production (RECP) and the employment of Eco-Industrial Parks (EIPs) will be needed to reach the Sustainable Development Goal (SDG) Target 12.4 on sustainable production and consumption. Resource-efficient value chains, using the circular economy approach, will minimize the consumption of raw materials, as well as water and energy.

The international framework for Eco-Industrial Parks (UNIDO/World Bank Group/GIZ, 2021) states that an EIP should prioritize sustainable water management, use, efficiency and treatment. EIPs use water responsibly, taking into account local water scarcity issues, and sensitive water reservoirs. An EIP should also plan to increase water efficiency for its resident firms and for the park as a whole. Due to the lack of available surface water, many EIPs in water-scarce regions have to draw the needed water resources from groundwater. Wastewater must be treated, and water circularity promoted. Water recycling should have priority over ZLD systems.
Pollutant Release and Transfer Registries (PRTRs) are useful instruments as they report emissions from industrial facilities into water as well as air and land (OECD, n.d.). Public disclosure, through organizations such as the CDP and the Global Reporting Initiative (GRI), has also proven to be an effective mechanism for tracking and driving corporate action to reduce and avoid negative impacts of industrial groundwater use.

Zero Liquid Discharge (ZLD)
The prime objective of ZLD is to prevent wastewater discharge and its negative impacts. ZLD aims to treat effluent to recover it as clean water and reuse it in the industrial process, turning water consumption to near-zero levels. As such, it is a form of process water recycling to control water pollution.

ZLD is achieved in stages – first by making the effluent fit for treatment, either through conventional physicochemical treatment, reverse osmosis and/or biological treatment. Thereafter, a series of post-treatment steps removes hardness, silt, turbidity and organics to a level where fouling of membranes does not occur.

The Indian government has imposed ZLD on its textile and garment manufacturing industry by legislation, starting in 2006 in Tamil Nadu. Many factories were shut down by the state’s high court, due to their inability to meet compliance requirements (Kiran and Rao, 2019). The ZLD policy has been expanded to nine states in the Ganges River basin and applied to five industrial sectors: textile, pulp and paper, distilleries, tanneries, and sugar.

Recent research and development on ZLD replace it by the concept of ‘minimal’ liquid discharge (MLD) that enables up to 95% liquid discharge recovery. This takes into account that attaining the final 3–5% of liquid elimination to achieve ZLD can nearly double the treatment cost (Grönwall and Jonsson, 2017b, p. 27).

Groundwater remediation
Groundwater remediation techniques treat polluted groundwater by removing the pollutants to acceptable levels or converting them into harmless products.

Biological, chemical and physical treatment technologies are employed and often a combination of technologies is utilized. Biological treatment techniques include bio-augmentation, bioventing, biosparging, bioslurping and phytoremediation. Some chemical treatment techniques include ozone and oxygen gas injection, chemical precipitation, membrane separation, ion exchange, carbon absorption, aqueous chemical oxidation, and surfactant enhanced recovery – others may be implemented using nanomaterials. Common physical treatment techniques include pump and treat, air sparging, dual phase extraction, and membrane techniques like reverse osmosis.

Mining has a different and more direct relationship with groundwater than most other industry sectors. In semi-arid regions, it may entirely depend on it. Mining’s interaction with freshwater is often through groundwater and the relationship can be conflicting. On the one hand, the water is a useful asset and resource in mineral extraction and processing. Yet, on the other hand, it is often a hidden liability. On the asset side of the equation, water is required in extracting, separating and processing ore, dust suppression, slurry transport, and washing. On the liability side, groundwater is a nuisance or inconvenience, as both underground and open-pit mines in many cases require frequent or continuous dewatering in order to operate, and there is the risk of contaminating a local aquifer, which may be a source of drinking water. The disposal of the water also presents challenges for treatment if it is contaminated by the mining activities. The extent of dewatering and treatment may add significantly to operational costs.
For example, mining in Poland requires dewatering 1 km³ of water per year (Kowalczyk et al., 2010). Based on an average household of three using 230 m³/year, this is the equivalent of the consumption of more than 4.3 million households or about 13 million people. Water use though the mining cycle is shown in Figure 5.2.

Figure 5.2 Water use during a mining project life cycle

<table>
<thead>
<tr>
<th>Exploration</th>
<th>Planning and construction</th>
<th>Operations</th>
<th>Closure and postclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide range of water use during drilling</td>
<td>Risk of contamination from drilling additives and sumps; stormwater management</td>
<td>Possible chemical contamination, monitoring needed</td>
<td>Manage wastewater discharge, seepage, groundwater from mine pit dewatering, and runoff</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Develop process to account for water use and related costs/risks</td>
<td>Account for water in all operation cycles incorporating data from all prior phases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rigorous monitoring needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Water plan and program legacy</td>
</tr>
</tbody>
</table>

Source: IFC (2014, fig. 1, p. 5).

The liability that comes with mining operations using groundwater and accompanying dewatering can be onerous in terms of moving and treating the groundwater and the associated costs. These issues and impacts are summarized in Table 5.5. There are also related issues – safety of workers and local residents, and impacts to drinking water and the environment. The fact that in 2020 only two mining companies reported leaching of pollutants to groundwater bodies as being a risk highlights that more attention may be needed in this respect (CDP, unpublished).

Contamination of groundwater arises commonly from oxidation and dissolution of pyrite from sulphide ore (acid mine drainage (AMD) is a long-standing issue in the mining industry), or from saline groundwater drainage and leachates. According to the results of national surveys conducted in the 1990s and 2000s, about 9,000 km² of groundwater bodies were at risk of metal pollution in the United Kingdom (UK) (IAH, 2018). Tailing storage facilities, common at many mines, can also lead to groundwater pollution (Box 5.1).

Mining can use the same technologies available to other industrial sectors to manage water, decrease its use and improve efficiency. In some cases, poorer-quality water can be used. For example, saline water can be better for some separation processes (Prosser et al., 2011). Groundwater management can be incorporated into regulations covering

a ‘cradle-to-grave’ approach as part of licensing (IAH, 2018). Moreover, the mining industry, through its various activities, may have ample in-house data on the location and extent of aquifers and their properties. Such data, if made publicly available, would add to the body of knowledge and be very useful to hydrogeologists, governments and water supply utilities.

Table 5.5
Groundwater impacts from active and legacy mining

<table>
<thead>
<tr>
<th>Nature of process/activities</th>
<th>Groundwater impacts and concerns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater supply for mining processes</td>
<td>Interference with pre-existing water well users, or permanent aquifer depletion, especially in case of non-renewable or weakly recharged aquifers in arid regions.</td>
</tr>
<tr>
<td>Groundwater pressure relief for slope stability</td>
<td>Usually in low-permeability formations and mainly a geotechnical issue with only limited groundwater system impact.</td>
</tr>
<tr>
<td>Dewatering for mine access drifts and faces</td>
<td>In large and/or deep mines/quarries, this can result in large cones of influence with impacts on water well users and groundwater-dependent ecosystems.</td>
</tr>
<tr>
<td>Sudden groundwater in-rush to mine galleries</td>
<td>Potential loss of life, damage to capital equipment and mining continuity with effects also on hydraulically linked springs and ecosystems.</td>
</tr>
<tr>
<td>Mine closure with water-table rebound</td>
<td>Can result in new groundwater discharge zones and mobilization of poor-quality groundwater into regional flow systems.</td>
</tr>
<tr>
<td>In-situ leaching of target minerals</td>
<td>Risk of strongly acidic or alkaline leachate carrying extracted mineral(s) polluting groundwater.</td>
</tr>
<tr>
<td>Accidental/incidental groundwater pollution from mining operations</td>
<td>Mine water drainage and tailings – dam seepage activating pollution sources and potentially impacting groundwater quality (especially in coal/lignite and heavy metal mining).</td>
</tr>
</tbody>
</table>

Box 5.1 Benefits of groundwater quality monitoring: The case of the AngloGold Ashanti in Cerro Vanguardia S.A. (Argentina)

Cerro Vanguardia S.A. (CVSAA) is the biggest gold and silver mine in size and production in the Patagonia region of Argentina. The operation includes a tailings storage facility (TSF), where the processed mine residue is continually deposited in a slurry form containing water and tailings/residue. The slurry separates in the TSF, and the water, which has traces of residual cyanide, is continually reclaimed for reuse in the gold recovery process. The TSF is surrounded by a network of monitoring wells to verify if the tailings from the process are affecting the groundwater. The monitoring programme assesses the presence of heavy metals and cyanides.

In 2003, routine water monitoring identified an isolated peak in cyanide levels in one borehole in the TSF. Investigations identified a quartz vein in the bedrock that was acting as a conduit, allowing cyanide to enter the groundwater. A major earthworks operation was started to expose the vein under the tailings dam and cover it with a thick high-density polyethylene (HDPE) liner to prevent the downwards seepage of water. This HDPE liner was two layers thick, with a series of electronic sensors installed between the layers to detect seeps through the liners. Ongoing monitoring of groundwater undertaken since the HDPE was installed indicates that the liner is successfully preventing further ingress of cyanide into groundwater.

Source: Adapted from ICMM (2012, pp. 28–29).
Much has been written about the water–energy nexus, but there is little information about the groundwater component, either in the production of energy or in the use of energy to withdraw, move and treat groundwater. As with industry, data for groundwater use in the energy sector are not commonly disaggregated from overall freshwater use or self-supplied use. Since the data availability may be skewed towards higher-income countries, the data cannot be easily extrapolated to other countries, especially where aquifers may not be present or easily accessible.

5.5.1 Groundwater use in energy

Some national-level data are collected in higher-income countries. Figure 5.3 shows a breakdown of water use in the USA for 2015 (USGS, n.d.). This figure indicates that groundwater comprises about 29% of the freshwater used and that only 0.5% of this 29% is used for thermo-electric power generation, whereas industry uses 3.2% with the majority – 70% – used for irrigation.

Canada conducts a biennial industrial water survey, which provides a great deal of detail about water use, including groundwater use for energy (Statistics Canada, n.d.). Table 5.6 shows the data for 2017 for the thermo-electric sector. It can be seen that, as with the USA, groundwater comprises only a minuscule percentage of the overall water use. The CDP’s unpublished analysis of global data for 2020 found that, of the 37 power generation companies that disclosed water information, 57% depended on groundwater (CDP, unpublished).

16 “Withdrawals for thermoelectric power were 133 Bgal/d [500 Mm³/d] in 2015 and represented the lowest levels since before 1970. Surface-water withdrawals accounted for more than 99 percent of total thermoelectric-power withdrawals, and 72 percent of those surface-water withdrawals were from freshwater sources. ... Thermoelectric-power withdrawals accounted for 41 percent of total withdrawals for all uses, and freshwater withdrawals for thermoelectric power accounted for 34 percent of the total freshwater withdrawals for all uses.” (Dieter et al., 2018, p. 1)
Data for groundwater use in primary energy production, such as oil and gas, are not readily available. However, in 2014, primary energy production used 12% of the overall water withdrawals for energy (IEA, 2016a). The CDP’s unpublished analysis of the 2020 data indicates that, of the 52 oil and gas companies disclosing water information, 85% depended on groundwater (CDP, unpublished).

Biofuels are very water-intensive, and if their growing relies on irrigation, groundwater is often a significant component. However, their relative water footprint per unit of energy appears to be significantly lower than that of other sources of primary energy. For example, whereas crude oil uses 1.06 m³/GJ, biomass in Brazil uses on average 61 m³/GJ (Gerbens-Leenes et al., 2008).

5.5.2 Energy for groundwater use

Much attention is paid to the water side of the water–energy nexus. However, the contribution and use of energy in the water sector has received less visibility, and though the International Energy Agency (IEA) has addressed this more fully (IEA, 2016a), the segregation of specific groundwater information is nonetheless quite limited.

In their report, the IEA estimated for 2014 the energy required to treat, process and move water at approximately 120 Mtoe17 (or about 1% of the world’s total consumption of 9,425 Mtoe in 2014 (IEA, 2016b)), about the same as the total energy demand of Australia. Electricity comprises about 60% of this total (about 820 TW, or 4% of the global total electricity consumption),18 about the total electricity consumption of Russia. Around 40% of the electricity to treat, process and move water is used to withdraw groundwater and surface water.19 If these estimates are integrated with the estimate that globally groundwater accounts for about a third of water withdrawals, then groundwater abstraction is consuming approximately 108 TW h per year, representing about 0.5% of global electricity consumption. This may not look like a large number, but seen through a local lens the situation can be very different. An example of an extreme case is India where 60% of the electricity used in the water sector is for groundwater abstraction. This number can be better understood if one considers that India accounts for nearly 26% of groundwater abstracted globally (Margat and Van der Gun, 2013). Pumping groundwater with electricity is about seven times more energy-intensive than surface water abstraction (in kWh/m³) (Figure 5.4). Electricity demand for pumping groundwater is expected to grow with increased groundwater abstraction, storage depletion and associated water level declines, combined with a shift away from diesel-fuelled pumping. However, there is a contrast in energy intensity for treatment, as groundwater is usually less contaminated than surface water and needs less treatment. It is also worth noting that desalination is up to one order of magnitude more energy-intensive than groundwater abstraction (Figure 5.4).

Table 5.6
Water intake in thermal-electric power generation in Canada (2017), by source

<table>
<thead>
<tr>
<th>Thermal-electric power generation</th>
<th>Million m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshwater source, publicly supplied, municipal</td>
<td>26.8</td>
</tr>
<tr>
<td>Freshwater source, self-supplied, surface water bodies</td>
<td>20,505.3</td>
</tr>
<tr>
<td>Freshwater source, self-supplied, groundwater</td>
<td>0.4</td>
</tr>
<tr>
<td>Freshwater source, self-supplied, other</td>
<td>32.9</td>
</tr>
<tr>
<td>Saline water source, self-supplied, groundwater</td>
<td>0.0</td>
</tr>
<tr>
<td>Saline water source, self-supplied, tidewater</td>
<td>2,700.9</td>
</tr>
<tr>
<td>Saline water source, self-supplied, other</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Source: Statistics Canada (n.d.).

17 Mtoe = Million tonnes of oil equivalent; 1 toe = 11.63 MWh
18 The balance is thermal energy, mainly diesel pumps for agricultural groundwater pumping, and natural gas for desalination plants in the Middle East and North Africa.
19 Wastewater treatment uses about 25% (but about 42% in developed countries) and distribution uses about 20%.

Fracking for natural gas, particularly in shallow aquifers, can present significant risks to groundwater contamination.
5.5.3 Energy and groundwater contamination

Even though the energy sector appears to use little groundwater, it can have profound effects on groundwater quality. Coal used in the generation of thermal electricity is well known for its deleterious environmental effects such as CO$_2$ and mercury emissions and air quality impacts. However, it has significant impacts on groundwater as well, as a result of leaching through coal ash waste dumps. This has been investigated in the USA (Box 5.2) and the effects may last for many years. Given the large number of coal-fired power plants worldwide, it might be fair to conclude that the impacts to groundwater globally could be extensive.

Fracking for natural gas, particularly in shallow aquifers, can also present significant risks to groundwater contamination. Pollution sources include wastewater from formation water, flow-back water, and drilling and fracturing liquids (IEA, 2016a). Regulations and best practice (including recycling and reuse) can reduce the amount of water required and the risks. Alternatives to water, or the use of foam to reduce water use, all have downsides as well.

Box 5.2 Coal ash dumps – the legacy of groundwater pollution

Coal contains many toxic chemicals, including arsenic, radium and other carcinogens, several metals that can impair children’s developing brains, and multiple chemicals toxic to aquatic life. Coal burning to produce electricity concentrates these toxic chemicals in the waste coal ash. For much of the 20th century, this waste was dumped in waste ponds and unlined landfills, which allowed infiltration to and contamination of groundwater.

In 2015, the US Environmental Protection Agency (US EPA) finalized a federal regulation for the disposal of coal ash: the Coal Ash Rule that established requirements for groundwater monitoring. The 2018 data from 4,600 groundwater monitoring wells included over 550 coal ash ponds and landfills, representing over 75% of the coal plants in the USA. The data showed that groundwater beneath almost all coal plants (91%) is contaminated, sometimes to significant levels. Arsenic and lithium are commonly found and the majority of plants have unsafe levels of at least four toxic chemicals that can seep from coal ash. Moreover, the issue is compounded by older closed coal ash dumps that are not covered by the regulation.

Source: Adapted from EIP (2019).
Industry is paying increasing attention to the risks and consequent challenges to its freshwater supply. To the extent that groundwater is part of freshwater supply, industry needs to be increasingly aware of this resource, or lack of it, as it can have a significant influence on business viability, return on investment, and profits. This is particularly significant in arid regions where industry makes more use of groundwater. The most recent report by the CDP indicates with regard to water risks that the costs of inaction (US$301 billion) versus action (US$55 billion) are five times greater (CDP, 2021). This is the case for most sectors with the exception of power generation and infrastructure, as large investments are being made to transition energy portfolios. In addition, business opportunities to invest in water security are estimated at US$711 billion.

In 2018, there had been a 7% decrease in the number of companies withdrawing from non-renewable groundwater, but at the same time, there was a significant increase in companies reporting withdrawals from all sources, including renewable groundwater (CDP, 2018). The CDP report for 2020 states that “almost two-thirds of responding companies are now reducing or at least maintaining their water withdrawals”, but only 4.4% report improvements regarding water pollution (CDP, 2021, p. 4). The CDP’s unpublished analysis of the 2020 data suggests that the number of companies maintaining or reducing their renewable and non-renewable groundwater withdrawals has jumped to 25% (721/2934) (CDP, unpublished).

For action on a plant site basis with regard to groundwater risks, within the fence line there are many technologies and management practices available to increase water efficiency and reduce use. Water audits and water footprints identify weak areas of water use, and measures centring on zero discharge, reusing and recycling water can be introduced to fill the gaps. Such measures may also be encouraged with companies on the supply chain. If groundwater is part of the water budget, then it will become part of these efficiency measures and may tie into RECP initiatives. These efforts may be scaled up into EIPs where industries cooperate in a symbiotic way on a variety of necessary inputs and outputs such as energy, waste and water. The next step is towards a circular economy, which may function on a local to regional scale with aspirations to national levels and where groundwater sustainability will be an integral part.

Economic instruments have taken on a broader perspective in recent years as financial institutions in corporate lending are paying attention to the level of water risk, which naturally includes groundwater. The CDP warns of dangers to “reputations, revenue and financial stability” from water risks (CDP, 2018, p. 11). Financial institutions are looking for companies “to decouple production and consumption from the depletion of water resources” (p. 11). The CDP reports for 2020 that 2,934 companies out of 5,537 (over one half) disclosed water data when asked by their investors or business customers (CDP, 2021).

However, in order to access and use groundwater resources sustainably, cooperation, sharing and partnerships with the many other stakeholders in groundwater is necessary for overall management of the resource, in other words stewardship (Box 5.3). This approach values water in many ways, from economic accounting and monetary value, through environmental worth, to sociocultural values, such as recreational, cultural and spiritual values (United Nations, 2021). Some of the main company and corporate value drivers are shown in Figure 5.5. Several organizations are actively promoting corporate water stewardship and publishing guidelines. These include the Alliance for Water Stewardship (AWS) and the CEO Water Mandate.
There is also a different dimension to defining the geography of stewardship. Unlike surface water where river basins form natural territories of stewardship, the boundaries of aquifers are less well-defined and often difficult to define. Those involved in stewarding a groundwater resource may cover a much wider area and many more stakeholders.

Box 5.3 Partnership between PT Multi Bintang and UNIDO

In East Java, the Indonesian Heineken Operating Company, PT Multi Bintang, in cooperation with The United Nations Industrial Development Organization (UNIDO) has catalysed a public–private partnership to overcome water scarcity. Building on pilot investments by PT Multi Bintang and the establishment of the Aliansi Air as a multi stakeholder platform, the Global Environment Facility (GEF) endorsed an upscaling project in March 2021. With a GEF-approved budget of US$1.8 million, absorption wells, agro-forestry schemes and riparian bamboo forests will be established by the Ministry of Environment and Forestry (MOEF) and UNIDO. This will enhance water retention in the catchment area, improve water percolation and increase groundwater replenishment. The project will result in the retention and replenishment of aquifers by some 1 million m³/year. These measures were identified by stakeholders from government, civil society, academia and the private sector in a participatory and inclusive bottom-up stakeholder engagement workshop as a prerequisite to guarantee the sustainable supply of water to people and businesses. As the project evolves, opportunities for further upscaling to the other 14 priority catchment areas targeted by the government of Indonesia will be identified. This will be done in close cooperation with the MOEF, the Indonesian Division of the Water Stewardship Alliance, and the just recently established Water Resilience Coalition, which has brought together the key Indonesian private sector entities with an interest to engage and cooperate in water stewardship.

Source: UNIDO (unpublished).

Figure 5.5

Corporate and community value drivers for water management stewardship

Source: IFC (2014, fig. 2, p. 9).
Industry and energy generally use less water than other major water use sectors, such as agriculture and municipalities, and correspondingly much less groundwater. However, they can have a very significant impact on groundwater quality through discharges, spills and leaching of waste. This is not to propose that industry and energy should move away from groundwater use, indeed in some ways their use of groundwater could relieve the stress on surface water resources releasing them for the benefit of other users. The private industry and energy sectors do have the flexibility to move quickly, and the means available for contributing effectively to the sustainable use of groundwater with respect to quantity and quality that other, more public, sectors sometimes lack.

Industry and energy have more control, through their ownership and organizational structures, over how much groundwater they use. As a result, they can act more nimbly and quickly than governments. Water reuse and recycling, zero-discharge initiatives, RECP projects, and EIPs all have a focus of using less water. These activities in turn form part of the shift to greener industry, Environmental, Social Governance (ESG), and industry and energy water stewardship. They can dovetail into Industry 4.0 improvements (see United Nations, 2021, Chapter 6, p. 93) and larger societal and government plans and activities such as integrated water resources management (IWRM), and move towards circular economies. Even the financial sector is now exerting its considerable influence over sustainable investing and this will have a knock-on effect, favouring clients, including those in industry and energy who need financing and use groundwater sustainably, and encouraging others to do so.

20 Industry 4.0 is the digital transformation of manufacturing/production and related industries and value creation processes.
Groundwater and ecosystems

WWAP
Tom Gleeson, Xander Huggins* and Richard Connor

Special Rapporteur on the human rights to safe drinking water and sanitation
Pedro Arrojo-Agudo and Enric Vázquez Suñé**

With contributions from:
Karen Villholth (IWMI), Melissa Rohde (TNC), Jac van der Gun (WWAP), David Kreamer and Marisol Manzano (IAH), Luciana Scrinzi and Giuseppe Arduino (UNESCO-IHP), Tales Carvalho Resende (UNESCO WHC), Nils Moosdorf (University of Kiel), Virginia Walsh (WASD), and Astrid Harjung (IAEA)

* University of Victoria and Global Institute for Water Security
** IDAEA-CSIC
Groundwater-dependent ecosystems (GDEs) consist of plants, animals and fungi that rely on the flow, temperature or chemical characteristics of groundwater for all or some of their water needs (Murray et al., 2003; Foster et al., 2006; Kløve et al., 2011) (Figure 6.1). GDEs are extremely diverse and can be divided into three classes based on the expression of groundwater within the ecosystem (Eamus et al., 2015; Figure 6.2). These include:

• aquatic GDEs, which depend on the interaction of groundwater and surface water, such as springs, wetlands and estuaries, as well as groundwater discharge and baseflow in rivers, streams, wetlands and coastal zones;

• terrestrial GDEs, which depend on ecologically accessible groundwater; and

• subterranean GDEs, which depend on aquifers and karst systems, including the hyporheic zones of rivers and floodplains.

While constituting different classes, GDEs may be closely linked and dependent on the same groundwater, which may be the case of riparian vegetation next to a river, and of the river ecosystem itself. GDEs contain endemic species reliant on the living conditions created by groundwater. GDEs can also be the foci of human settlements, centres of religious and cultural practice, and even the source of conflict (Kreamer et al., 2015; United Nations, 2021).

Groundwater dependence can be continuous, seasonal or occasional, and becomes apparent when a species loses access to groundwater long enough to display a negative response, such as reduced growth or reproduction, or increased mortality. Some species are completely dependent upon groundwater, such as those that rely on springs or constant baseflow inflow to rivers, lakes or coastal zones. But groundwater dependence can be more difficult to discern for other species because a combination of water sources (e.g. groundwater, surface water, precipitation, irrigation return flow, stormwater runoff) provides certain living conditions in different seasons or different life stages.

GDEs have been mapped for some jurisdictions, such as California (USA, Box 6.1) and Australia (Doody et al., 2017). Mapping is an important component in the emerging interdisciplinary field of ecohydrogeology, which aims to fill existing knowledge gaps between hydrology, hydrogeology and ecology (Cantonati et al., 2020) using a diversity of methods (Eamus et al., 2015; Ramsar Convention Secretariat, 2013; Kalbus et al., 2006, Murray et al., 2003).
Figure 6.2 Interactions between groundwater, ecosystems, human activity and nature-based solutions

(a) Groundwater-dependent ecosystems are found from high mountain valleys to the bottom of the oceans as ...

(b) Groundwater-dependent ecosystems support many ecosystem services

(c) Groundwater-dependent ecosystems are impacted by humans

(d) Groundwater-dependent ecosystems support nature-based solutions

Sources: (a), (b) and (c) based on Maven’s Notebook (2015); (d) based on Villholth and Ross (n.d.).
Box 6.1 Mapping groundwater-dependent ecosystems in California (USA)

Mapping groundwater-dependent ecosystems (GDEs) is the first step to managing them. To date, GDE mapping has been predominantly a localized process requiring time-consuming expert review and field studies to verify ecosystem dependence on groundwater. In California, GDEs were first mapped using an inference-based approach that relied on hydrological features in the landscape (springs, wetlands and rivers supported by baseflow; Howard and Merrifield, 2010). This map resulted in specific requirements to identify and consider impacts to GDEs under California’s Sustainable Groundwater Management Act (SGMA). To support local agencies in identifying GDEs in their basins, the map was refined using vegetation mapping from aerial photography (Klausmeyer et al., 2018) and the spatial dataset provided online.¹ GDE mapping at broader landscape scales is increasingly possible through remote sensing and spatial analyses using geographical information systems (Eamus et al., 2015). The Nature Conservancy is leading a global GDE mapping effort, using Google Earth Engine to process massive global remote sensing and land use and climate datasets, which will be released in 2022.

Mapping groundwater-dependent ecosystems in California

Source: Produced by the authors on the basis of the NCCAG database (Klausmeyer et al., n.d.)

¹ gis.water.ca.gov/app/NCDatasetViewer/.
² SGMA basins refer to high-priority basins under the Sustainable Groundwater Management Act (SGMA) of California.
Aquatic groundwater-dependent ecosystems can be found across a variety of landscapes, ranging from high mountain valleys to the bottom of the ocean and even in deserts. Possibly the most obvious groundwater-dependent ecosystems are springs: highly diverse, endemic and abundant systems found in over 2.5 million locations, including caves, oases, fountains, geysers and seepages (Cantonati et al., 2020). Though small, spring habitats are exceptionally biodiverse. A study in northern Arizona (USA) detected 20% of the flora of an entire forest in springs that represented <0.001% of the landscape (Kreamer et al., 2015). Desert oases are large springs, yet they have received little attention in the groundwater-dependent ecosystem literature despite their global prominence (774 oases are documented in the Sahara and Arabian Oases Atlas and the Ramsar List of Wetlands of International Importance includes 225 freshwater springs and oases, reported together).

The ecology of many wetlands, lakes, rivers and other surface water bodies is dependent on the complex interactions between groundwater and surface water, which can change with time over seasons or years, as well as by location across a wetland, lake or river (Swanson et al., 2021; Kreamer and Springer, 2008). Wetlands are referred to here in accordance with their definition under Article 1.1 of the Ramsar Convention as “areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres” (Ramsar Convention Secretariat, 2013).

Groundwater discharge supports baseflows of streams and rivers, a crucial water source that determines a stream or river’s risk to fall dry during periods of drought (Boulton and Hancock, 2006; Larned et al., 2010). Baseflow can contribute nearly 100% of streamflow in some humid regions (Beck et al., 2013) (Figure 6.3). In contrast, baseflow can be an insignificant contributor to streamflow in many arid regions. In these environments, ephemeral stream networks can be important sources of groundwater recharge (Cuthbert et al., 2016). Perched aquifers can serve as important supporters of surface water ecosystems, as groundwater levels tend to drop mostly due to evaporation, and not due to downward seepage. Important examples of this are pools in ephemeral streams that may retain some biodiversity during no-flow periods due to survival in these isolated water bodies (Bonada et al., 2020).

Groundwater discharging to marine environments is a ubiquitous phenomenon along coastlines (Luijendijk et al., 2020). It creates unique ecosystems where saltwater and freshwater mix (Lecher and Mackey, 2018) and can be a substantial nutrient source for coastal and estuarine waters. This can lead to eutrophication and hypoxia, especially where upstream catchments are heavily developed through intensive farming and urbanization (Santos et al., 2021; Hosono et al., 2012). The high salinities of coastal terrestrial sabkha21 environments are mostly sustained by groundwater, which provides solutes that remain after the water has evaporated and create these special biomes (Yechieli and Wood, 2002). In high-salinity water like the Dead Sea, groundwater inflow sustains local ecosystems that otherwise would not be able to tolerate the salinity (Ionescu et al., 2012). In many desert inland areas, valuable wetlands with delicate ecologies are also commonly present at the margins of salt flats (Marazuela et al., 2019).

Terrestrial ecosystems depend on groundwater in managed and natural landscapes in all anthropogenic biomes (Ellis and Ramankutty, 2008) around the world where groundwater is accessible to plants (Fan et al., 2017; Figure 6.2a). The impact of different forest canopies on infiltration and recharge is debated (Ellison et al., 2017). Even the effect of forestry on groundwater recharge and low season flows is variable, with different impacts in different regions and climates as well as at different stages in the forestry cycle (Reynolds and Thompson, 1988).

21 A coastal, supratidal mudflat or sandflat in which evaporite-saline minerals accumulate as the result of a semiarid to arid climate.
Vegetation impacts have not yet been thoroughly researched or integrated in the management of groundwater recharge. In the Sahel, groundwater levels have increased over decades primarily as a result of changes in vegetation from deep-rooted natural vegetation to shallow, less water-consuming crops (Favreau et al., 2009). Water holes in arid environments are often purely groundwater-fed, and thus groundwater is crucial to sustaining the complex food webs of arid landscapes, such as savannahs. Wildlife-dug waterholes can be life-supporting, and demonstrate the intricate link between groundwater, ecosystem support and biodiversity (Lundgren et al., 2021). In cropland and rangeland biomes, groundwater supports the ecology of both managed and natural landscapes, even if these landscapes are typically viewed from an agricultural rather than ecological perspective. Finally, riparian zones, wetlands and other surface water bodies often depend on groundwater and can provide crucial ecosystem services. For example, in more humid areas, riparian forests and wetlands can purify nitrogen-rich runoff and drainage from agricultural and livestock farming activities (Bahn and An, 2020), reducing the nutrient loading in GDEs. Conversely, in more arid areas, seasonal flooding may enhance groundwater recharge in floodplains, while sedimentation may provide significant nutrient and soil-improving amendments (Talbot et al., 2018).

Subterranean ecosystems are ubiquitous but generally poorly understood. Organisms and microorganisms are found in varying composition and abundance in all aquifers (Humphreys, 2006, Danielopol et al., 2003). These subterranean ecosystems often help purify water and impact aquifer storage, sometimes increasing storage through bioturbation and feeding on biofilms and other times decreasing storage through clogging pore space. In many places, land use strongly influences the abundance, composition and community structure of groundwater invertebrates; Tione et al. (2016) describe an example located in Argentina. As subterranean ecosystems are sensitive to changes in groundwater quality, monitoring abundance and other bio-indicators within these ecosystems can provide alternative and useful approaches to tracking changes in groundwater quality (Griebler and Avramov, 2015).

Interactions between groundwater and ecosystems are of increasing importance in the major freshwater ecosystems of the world, such as those found on the list of priority freshwater ecoregions for global conservation (Olsson et al., 2002; Figure 6.3e), including certain eastern Australian rivers, the Indus River, the Congo River, the Amazon River, the Colorado River; and other notable wetland complexes such as the Okavango Delta in Southern Africa, the Sudd Swamps in South Sudan, the Inner Niger delta in the Sahel and the Pantanal in South America. These regions not only provide habitat for globally significant levels of biodiversity but are also crucial to larger Earth system processes, including nutrient cycling, carbon sequestration and atmospheric water and energy processes (Erwin, 2009). That many of these regions routinely experience drought (eastern Australia), suffer from ongoing groundwater depletion (Indus River, Colorado River), or will experience increasingly variable or anomalous groundwater storage due to climate change (Okavango Delta; Hughes et al., 2011) is indicative of the breadth and severity of implications arising from threats to groundwater-dependent ecosystems worldwide (Section 6.3).

Ecosystem services are defined as the numerous and wide-ranging benefits to humans afforded by the natural environment (IPBES, 2019). GDEs support critical ecosystem services (Figures 6.2 and 6.4). Each type of GDE supports a number of ecosystem services (Figure 6.2) across the categories of supporting, provisioning, regulating and cultural services (see Section 1.5). Aquatic and terrestrial GDEs provide habitat, support biodiversity, buffer floods and droughts, and provide food, as well as offering cultural, recreational, spiritual and aesthetic services. Throughout human history, springs have inspired art and music, have been both the object and a strategic tool in conflict and war, and have provided focal points for religious ceremony and belief (Kreamer et al., 2015). Many Indigenous cultures believe that springs, wetlands and their associated ecosystems have a broader, intrinsic value beyond the
Groundwater and ecosystems provide important ecosystem services, such as storing and providing water resources, attenuating contaminants, and controlling disease (Griebler and Avramov, 2015). These services are sometimes called groundwater-related ecosystem services (Manzano and Lambán, 2011). Groundwater and ecosystems, which are linked with vegetation and soils in the unsaturated zones, play critical roles in protecting aquifers from contamination by ensuring physical separation, enabling biophysical processes like filtration, biodegradation and sorption of contaminants, and by facilitating and protecting natural recharge (CGIAR WLE, 2015).

Figure 6.3 Global patterns in groundwater dependency, hotspots of regional threats, and priorities for conservation and management for aquatic and terrestrial ecosystems

Note: (a) baseflow index, representing the relative contribution to streamflow from groundwater and other delayed sources; (b) relationship between steady-state water table (WT) depth and maximum rooting depth; (c) estimated year in which environmental flow limit is reached (Section 6.4); (d) groundwater depletion rates; (e) Ramsar Sites, identifying wetlands of international importance and Global 200 freshwater ecoregions; and (f) Global 200 terrestrial ecoregions. The Global 200 ecoregions are a prioritized set of 238 ecoregions (53 terrestrial, 142 freshwater, and 43 marine – not included here) developed to protect regions of exceptional biodiversity and representative ecosystems.

Sources: Authors, based on data from: (a) Beck et al. (2013); (b) Fan et al. (2013, 2017); (c) De Graaf et al. (2019); (d) Wada et al. (2010); (e) Ramsar Sites Information Service (n.d.) and Olson and Dinerstein (2002); and (f) Olson and Dinerstein (2002).
GDEs and services are generally under-represented in the United Nations Sustainable Development Goals (SDGs). The importance of groundwater is poorly recognized and captured at the SDG target level, which is compounded by the lack of globally useful, up-to-date and SDG-relevant groundwater data and the lack of clarity on the essential linkages between aquifers and the SDGs (Guppy et al., 2018). The role of groundwater in aquatic ecosystems is linked with Target 6.4 (Water use and scarcity) and Target 6.6 (Water-related ecosystems). Target 6.4, the only SDG target that currently operationalizes groundwater and ecosystem services, incorporates environmental flows into ‘water stress’ Indicator 6.4.2.

It has a methodology and online tool for calculating sustainable groundwater abstraction linked to guidelines on environmental flow assessment (FAO, 2019). Target 6.6 monitors changes through time in water-related ecosystems such as vegetated wetlands, rivers, lakes, reservoirs and groundwater (Dickens et al., 2017). But to date, the focus of data collection has been on the spatial extent of open water with no focus on groundwater, nor on the differentiation or mapping of GDEs – an important missing link in the SDG methodology.

Groundwater-dependent ecosystems and the related ecosystem services are threatened by groundwater depletion, climate change and land use changes (Figures 6.2, 6.3 and 6.5). Groundwater depletion, the persistent decline in water levels, impacts both aquatic and terrestrial ecosystems (Figure 6.5). Hotspots of groundwater depletion (Figure 6.3d) are found around the world, often in regions with intensive groundwater withdrawals for irrigation. Streamflow depletion, the lowering of streamflow due to groundwater pumping, is a significant concern for aquatic ecosystems (Gleeson and Richter, 2017). The ecological impacts of streamflow depletion (Figure 6.3c) occur where streamflows are below environmental flows (defined in Section 6.4), which is predicted to occur in roughly 40 to 80% of all basins with active groundwater pumping by mid-century (De Graaf et al., 2019).

There is a significant drying of springs, wetlands and oases around the world. Climate change impacts on GDEs (Kløve et al., 2014) are important to consider, especially since groundwater often acts as a buffer during drought, either naturally through feeding streams in dry periods, or indirectly through increased human use during such periods. Undermining these functions can be detrimental to human and ecological systems. Finally, land use changes impact GDEs. For example, the loss of dry forests has led to regional salinization in Australia (Clarke et al., 2002) and the Chaco region of Argentina and Paraguay (Giménez et al., 2016; Marchesini et al., 2013).

Water quality, temperature and contamination all impact GDEs and the services they provide
Groundwater and ecosystems

Water quality, temperature and contamination all impact GDEs and the services they provide (Figure 6.5). Groundwater quantity (volume, level, flux and their variations in time) is this Chapter's primary consideration, but groundwater quality (natural and as affected by human impacts) and temperature are also essential. Each ecosystem is conditioned by specific water quality requirements, and what is appropriate in certain ecosystems may be detrimental in others. For example, salinity in coastal wetlands or in salt flats is necessary for these ecosystems. However, in other environments, such as terrestrial ecosystems, an increase in salinity due to artificially raised water tables as a result of land use change (e.g. deforestation in Australia) or excessive irrigation (e.g. Lower Indus Valley, Pakistan) can lead to habitat degradation, decreased agricultural outputs, soil erosion, altered biogeochemical cycling and decreased carbon storage (Foster and Chilton, 2003). Geogenic contamination (i.e. with naturally occurring chemical contaminants) affects the health of millions of people worldwide, and may also impact GDEs – a problem that requires more attention (Bretzler and Johnson, 2015). GDEs can be impacted by known and emerging organic contaminants (pesticides, pharmaceuticals, recreational drugs, surfactants and personal care products), and by nutrient pollution from domestic and urban wastewater and agriculture. Organic contaminants and their degradation products can cause health problems, including developmental and reproductive effects in humans, wildlife and ecosystems (Campbell et al., 2006). Previous studies of ecosystem impacts of contamination have focused on surface water. Less is known about ecosystems impacted by groundwater contamination.

The shared well-being of groundwater, ecosystems and humans may be enhanced by groundwater management, conjunctive water and land management, nature-based solutions (WWAP/UN-Water, 2018), and improved ecosystem protection. Groundwater management, as described in Chapter 11, often focuses on groundwater or aquifers themselves. While important, this is often insufficient to ensure that groundwater and ecosystems together continue to provide critical ecosystem services. Conversely, groundwater knowledge or management is often insufficiently incorporated into ecosystem protection and management. Even though groundwater discharge and baseflow are the basis for the good state of many aquatic ecosystems, groundwater dependency of these systems is often not considered in mapping freshwater habitats or biodiversity (McManamay et al., 2017). For example, the World Wildlife Foundation's Global 200 list of ecoregions (terrestrial, freshwater, and marine subclasses) does not directly or explicitly consider groundwater or map GDEs (Box 6.1) when highlighting key areas of protection for aquatic and terrestrial ecosystems (Olson and Dinerstein, 2002). Explicitly considering groundwater in conjunctive water and land management, nature-based solutions, and ecosystem protection is a practical entry point to achieving groundwater and ecosystem sustainability.

Groundwater is part of both the water cycle and complex aquatic, terrestrial and subterranean ecosystems. It is thus essential to integrate groundwater management with ecosystem and watershed planning and protection, as is currently done at different scales: subnational (e.g. California), national (South Africa or Australia), or supranational (e.g. European Union) (Rohde et al., 2017). Land use planning that better incorporates groundwater generally has two elements: (i) resource quantity maintenance and quality protection, based on the vulnerability of a groundwater system or an aquifer to depletion, subsidence, degradation or pollution; and (ii) source protection around individual groundwater withdrawal sites, such as boreholes or springs, with a focus on protection from pollution (Smith et al., 2016).

Groundwater nature-based solutions (sometimes also called groundwater-based natural infrastructure) intentionally use and manage groundwater and subsurface systems and processes in order to increase water storage, flood retention, water quality, and environmental functions or services for the overall benefit of water security, human resilience and environmental sustainability (Villholth and Ross, n.d.). The best-known groundwater nature-based solution is managed aquifer recharge (see Box 7.1 and Section 11.5), which is increasingly implemented.
Note: (a) and (b) ecological responses to decreasing groundwater availability: (a) aquatic and (b) terrestrial groundwater-dependent ecosystems; (c) and (d) water quality and contamination impacts on groundwater-dependent ecosystems: (c) soil and groundwater salinization processes due to land use change, coastal pumping and irrigation, and (d) local and regional impacts of contamination events due to regional groundwater flow systems.

Sources: (a) and (b) based on Rohde et al. (2017, fig. 2, p. 297); (c) based on Foster and Chilton (2003, fig. 8, p. 1965); and (d) authors.
Groundwater and ecosystems

Other solutions exist along a spectrum of grey (more engineered) to green (more natural) infrastructure, including conservation agriculture, water infiltration basins, runoff harvesting, riverbank filtration and in-situ bioremediation of groundwater. Many cities have installed green infrastructure to improve water quality and quantity (so-called sponge cities; Harris, 2015), but there is a lack of knowledge and understanding of the quality and potential impacts of water infiltrated into urban aquifers (Box 6.3).

Finally, GDEs are usually not directly or formally protected. Protection of GDEs, especially terrestrial and subterranean, are largely ignored (Kreamer et al., 2015). An important exception to this is the Ramsar Convention (Box 6.2), which developed a seven-step groundwater management framework to maintain the ecological character of wetlands of international importance (Ramsar Convention Secretariat, 2010). Many of these are transboundary and require international cooperation for their protection and sustainable development, with explicit focus on shared groundwater and aquifers (cf. Chapter 12). Another widely used tool to protect aquatic ecosystems is the monitoring of environmental flows, which are the quantity, timing and quality of freshwater flows and levels necessary to sustain aquatic ecosystems that, in turn, support the cultures, economies, sustainable livelihoods and well-being of humans (Arthington et al., 2018). For example, the European Union Water Framework Directive establishes groundwater quantity and quality thresholds for GDEs (European Parliament/Council, 2000). In this case, minimum environmental flows should not be considered as ‘ecological demands’, but as ‘restrictions to various uses’ (both from the GDE or from nearby groundwater) in order to prevent environmental flows from competing with other human water demands. There are many environmental flow methods, but very few explicitly consider or quantify the groundwater contribution to environmental flows (FAO, 2019; Gleeson and Richter, 2017). Finally, there is a need to better understand the water quality aspects of environmental flows associated with groundwater.

Box 6.2 Groundwater, wetlands of international importance (Ramsar Sites), and UNESCO-designated sites, such as World Heritage sites, Biosphere Reserves and Geoparks

Groundwater is under-represented in global conservation networks, such as the Ramsar List of Wetlands of International Importance (Ramsar Convention Secretariat, 2013) and UNESCO-designated sites (World Heritage sites, Biosphere Reserves and Geoparks). The Ramsar List recognizes wetlands (Ramsar Sites) that are significant for ‘humanity as a whole’ based on site rarity, biological diversity and ecological community criteria. The Ramsar List (Figure) identifies groundwater processes or surface expressions such as ‘permanent freshwater springs; oases’ and ‘karst and other subterranean hydrological systems’, as well as groundwater-dependent environments like ‘freshwater rivers/streams/creeks’. Ramsar Convention Parties are individually responsible for designating Sites and for the wise use and management of transboundary wetlands. However, there is no systematic assessment of groundwater’s supporting role across the global network of Ramsar Sites nor of the Sites’ roles in supporting groundwater resources.

The UNESCO-designated sites provide space for sustainable development experimentation and exemplification. Alongside Ramsar Sites, UNESCO-designated sites are critical to achieving targets across the Sustainable Development Goals (SDGs). Global wetlands, punctuated by Ramsar Sites, contribute to 75 SDG indicators (Ramsar Convention Secretariat, 2018). Currently, there are more than 130 Ramsar Sites that overlap wholly or partially with more than 100 UNESCO-designated sites. An iconic example is the Okavango Delta World Heritage site (Okavango Delta System Ramsar Site) in Botswana, a large flood-pulsed inland wetland forming a mosaic of water paths, floodplains and islands (Figure 6.1). Groundwater under islands acts as a sink for dissolved minerals due to the ‘water pumping’ by trees and vegetation on the islands that remove water through evapotranspiration, hence preventing salinization of this virtually enclosed, evaporation-dominated hydrological system. This process enables surface water in the delta to remain fresh, providing a source of water for wildlife and local people in the middle of the dry Kalahari Desert (UNESCO, n.d.). Despite their importance in maintaining the resilience of several ecosystems, there remains no comprehensive study of groundwater dependencies or relationships across UNESCO-designated sites. The Ramsar Convention and UNESCO-designated sites can be mutually supportive and complementary to ensure that ecosystem processes as well as cultural values are fully embedded in the protection and management of the designated sites.
Box 6.3 Nature-based solutions to protect groundwater-dependent ecosystems

Nature-based solutions can be an effective part of the management, protection or rehabilitation of groundwater-dependent ecosystems (GDEs) by reducing anthropogenic impacts (land use/climatic changes, groundwater abstraction, nutrient loads due to agricultural practices, point-source and diffuse pollution). Two examples highlight the diversity of nature-based solutions and their impacts on GDEs.

Nature-based solutions were designed and implemented in the catchment area of the Sulejów Reservoir (Poland), an area characterized by cyanobacterial blooms due to heavy pollution of groundwater with nitrates and phosphorus from nonpoint source pollution. A subsurface zone of pine sawdust mixed with soil or limestone led to a reduction in phosphate and nitrates concentrations in the groundwater of 58% and 85%, respectively (Izydorczyk et al., 2013; Frątczak et al., 2019).

Another example of groundwater-based natural infrastructure is from rural coastal Bangladesh. Here, carefully designed local rainwater harvesting and groundwater storage schemes support water security and resilience in areas afflicted by salinity and naturally occurring arsenic in groundwater (Ahmed et al., 2018). These schemes capture seasonal rainfall often lost to surface runoff to the sea through simple wells and filters, making it available throughout the year. Further, due to the density of the saline groundwater, the infiltrated freshwater tends to float on top without mixing. Every scheme serves small communities of up to several hundred people, who are able to maintain the system themselves, after training. These systems have been upscaled to over 100 communities in Bangladesh and hold great potential in flood-prone yet water-scarce areas.
Chapter 7

Groundwater, aquifers and climate change

UNESCO-IHP
Richard Taylor and Alice Aureli

IAH
Diana Allen, David Banks, Karen Villholth and Tibor Stigter

With contributions from:
Mohammad Shamsudduha (UCL-IRDR), Maxine Akhurst (BGS), Niels Hartog (KWR), Harmen Mijnlieff and Rory Dalman (TNO), Bridget Scanlon (UTexas-Austin), Timothy Green (USDA), Yuliya Vystavna (IAEA), Tommaso Abrate (WMO), Pedro Arrojo-Agudo (Special Rapporteur on the human rights to safe drinking water and sanitation), Tatiana Dmitrieva and Mahmoud Radwan (UNESCO-IHP), Guillaume Baggio Ferla (UNU-INWEH), Ziad Khayat (UNESCWA), Eva Mach (IOM) and Enric Vázquez Suñé (IDAEA-CSIC)
Climate change strongly influences freshwater supply and demand globally. Warming of ~1°C over the last half century globally has directly impacted the supply of freshwater through the amplification of precipitation extremes, more frequent and pronounced floods and droughts, increasing evapotranspiration rates, rising sea levels, and changing precipitation and meltwater regimes. Groundwater, the world’s largest distributed store of freshwater, is naturally well placed to play a vital role in enabling societies to adapt to intermittent and sustained water shortages caused by climate change. It is also essential to satisfy the increased demand for water in order to realize many of the United Nations’ Sustainable Development Goals (SDGs), including no. 2 (zero hunger), 6 (water for all) and 13 (climate action). Aquifers transmitting and storing groundwater can also contribute to climate change mitigation through the use of geothermal energy to reduce CO$_2$ emissions, as well as the capture and storage of emitted CO$_2$. This chapter reviews the latest understanding of the impacts of climate change on groundwater quantity and quality as well as the opportunities, risks and challenges posed by the development of aquifers for climate change adaptation and mitigation.

Climate change influences groundwater systems directly through changes in the water balance at the Earth’s surface, and indirectly through changes in groundwater withdrawals as societies respond to shifts in freshwater availability (Figure 7.1 – Taylor et al., 2013a; Lall et al., 2020). The impacts of climate change on terrestrial water balances can be further modified by human activity such as land use and land cover (LULC) change (Favreau et al., 2009; Amanambu et al., 2020). Global warming also triggers the release of freshwater from long-term storage in continental icesheets and thermal expansion of the oceans, both of which contribute substantially to sea level rise (SLR).

7.2.1 Direct impacts of climate change on groundwater

Climate change directly impacts the natural replenishment of groundwater. This replenishment can occur across a landscape by precipitation directly (i.e. diffuse recharge) and via leakage from surface waters, including ephemeral streams, wetlands or lakes (i.e. focused recharge). The latter process is more prevalent in drylands (Scanlon et al., 2006; Cuthbert et al., 2019a). Globally, mean modelled estimates of contemporary (1960s to 2010s) diffuse recharge range from 110 to 140 mm/year (Mohan et al., 2018; Müller Schmied et al., 2021), equivalent to 15 to 19 km3/year, and comprise ~40% of the world’s renewable freshwater resources (Müller Schmied et al., 2021). Substantial uncertainty persists, however, in global projections of the impacts of climate change on groundwater recharge. This uncertainty stems primarily from limitations in the representation of climate change by Global Circulations Models (GCMs) and groundwater recharge by Global Hydrological Models (GHMs) (Reinecke et al., 2021).

Changes in precipitation and evapotranspiration

Climate and land cover largely determine rates of precipitation (P) and evapotranspiration (ET), whereas the underlying soil and geology dictate whether a water surplus ($P - ET$) can be transmitted to an underlying aquifer. The amplification of ET rates in a warming world constrains the generation of water surpluses; globally ET is estimated to have increased by ~10% between 2003 and 2019 (Pascolini-Campbell et al., 2021).

Spatial variability in diffuse recharge is controlled primarily by distributions in precipitation. As the planet warms, however, considerable uncertainty persists in where, when, and how much rain or snow will fall. A key conclusion of the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014a, p. 1085), the idea that hydrological responses to climate change can be described as "wet gets wetter, dry gets drier," has been extended to include more extreme events and changes in hydrologic cycle.
since been shown to be too simplistic (Byrne and O’Gorman, 2015). Substantial reductions in precipitation, for example, are projected in wet equatorial regions of the Americas and Asia, with the largest projected increases in precipitation occurring over oceans in the tropics, and not over land (Figure 7.2).

Over time, climate extremes (i.e. droughts and floods), which strongly influence groundwater recharge, often correlate to modes of climate variability such as the El Niño Southern Oscillation (ENSO, e.g. Taylor et al., 2013b; Kolusu et al., 2019) and Atlantic Multi-decadal Oscillation (Green et al., 2011). No consensus exists, however, in how large-scale controls on climate variability like ENSO are projected to respond to global warming (McPhaden et al., 2020). During the multi-annual Millennium Drought in Australia (1995–2010), groundwater storage in the Murray-Darling basin declined substantially and continuously by ~100 ± 35 km³ from 2000 to 2007 in response to a sharp reduction in recharge and an absence of extreme rainfall events (Leblanc et al., 2009). Wetter conditions do not, however, consistently produce more groundwater recharge: incidences of greater (x 2.5) winter precipitation in the southwestern USA during ENSO years, for example, can give rise to enhanced ET from desert blooms that largely or entirely consume the water surplus (Scanlon et al., 2005).
One observed and widespread impact of climate change influencing groundwater replenishment is the intensification of precipitation. As warmer air holds more moisture, greater ET is required to reach condensation (dew) points in a warming world. This transition results in fewer light precipitation events and more frequent heavy precipitation (Myhre et al., 2019). This ‘intensification’ of precipitation is strongest in the tropics (Allan et al., 2010), where the majority of the world’s population is projected to live by 2050 (Gerland et al., 2014). The consequences of this changing distribution in global precipitation include more variable and reduced soil moisture, more frequent and intense floods, as well as longer and more frequent droughts.

The transition towards fewer but heavier rainfalls is expected to enhance groundwater recharge in many environments. Heavy rainfall has been shown to contribute disproportionately to groundwater recharge in locations across the tropics (Jasechko and Taylor, 2015; Cuthbert et al., 2019a; MacDonald et al., 2021), including drylands, where extreme (heavy) rainfall creates ephemeral surface water bodies that generate focused recharge (Favreau et al., 2009; Taylor et al., 2013b; Seddon et al., 2021). The disproportionately greater contribution of heavy rainfall to groundwater recharge has similarly been noted in drylands outside of the tropics in Australia (Crosbie et al., 2012) and the southwestern USA (Small, 2005). Episodic increases in groundwater storage from

Figure 7.2 Projected changes in mean annual precipitation globally under climate change

Note: Areas in red (dark blue) and brown (light blue) indicate where substantial reductions (increases) in precipitation are projected this century.

Changes are defined as the difference between projected (2071–2100) CMIP5 (Coupled-Modelled Inter-Comparison Project Phase 5) ensemble mean annual precipitation and observed (1979–2019) mean annual GPCP v2.3 (Global Precipitation Climatology Project) precipitation.

Source: Authors, based on CMIP5 data from Taylor et al. (2012a) and GPCP data from Adler et al. (2003).
recharge, estimated from GRACE23 satellite data in drylands around the world, are associated with extreme (> 90th percentile) annual precipitation (Figure 7.3). In contrast, in temperate regions characterized by shallow water tables that can rise quickly to the ground surface during heavy rains, potential increases in recharge are limited (Rathay et al., 2018) and groundwater flooding can occur (Macdonald et al., 2012).

Figure 7.3
Changes in monthly groundwater storage and annual precipitation in four large aquifer systems in drylands areas of the USA and Australia

Note: Years of extreme (90th percentile) precipitation include 2006 (Central Valley), 2015 (High Plains Aquifer), 2011 (Great Artesian Basin) and 2011 (Canning Basin). Monthly time series of changes in groundwater storage derived from GRACE satellite data with changes in annual precipitation, Climatic Research Unit (CRU) v. 4.01; Harris et al., 2014 and fitted non-linear and linear trends. Shaded envelopes around the trends indicate a 95% confidence interval of the fitted trends; locations of the four large aquifer systems (defined by WHYMAP, 2008) are shown on the world map on the top left, with the aridity index as blue-red shading.

Source: Authors, based on Shamsudduha and Taylor (2020).

Changes in ice and snow
Across continental northern latitudes, as well as in mountainous and polar regions, global warming alters meltwater flow regimes from ice and snow, impacting groundwater recharge. In temperate regions, warming results in less snow accumulation and earlier snowmelt, as well as more winter precipitation falling as rain and an increased frequency of rain-on-snow events (Harpold and Kohler, 2017). The aggregate impact of these effects is a reduced seasonal duration and magnitude of recharge, which lowers water storage in catchments and amplifies

The severity of extreme summer low flows (Dierauer et al., 2018). Aquifers in mountain valleys exhibit shifts in the timing and magnitude of: (1) peak groundwater levels due to an earlier spring melt, and (2) low groundwater levels associated with longer and lower baseflow periods (Figure 7.1) (Allen et al., 2010). Summer low flows in streams may be exacerbated by declining groundwater levels, so that streamflow becomes inadequate to meet domestic and agricultural water requirements (see section 7.2.2) and to maintain ecological functions such as in-stream habitats for fish and other aquatic species. These hydrological changes are compounded by the higher temperature of summer low flows (Dierauer et al., 2018).

The impacts of receding alpine glaciers on groundwater systems are not well understood. As glaciers recede due to climate change, meltwater production initially increases to a maximum, known as ‘peak water’, before dropping off as the glaciers continue to retreat; approximately half of the world’s glacierized drainage basins are considered to have passed peak water (Huss and Hock, 2018). In the tropical Andes of Peru, glacier meltwater flows steadily decrease after peak water but during the dry season groundwater continues to discharge to streams, maintaining baseflow during the water-stressed dry season (Somers et al., 2019). Similarly, recent analyses highlight increases in focused recharge due to increased meltwater contributions to streamflow in glacierized drylands (Liljedahl et al., 2017). Over the longer term under climate change, a reduction in recharge occurs due to increasing ET, which may reduce meltwater contributions that generate focused recharge from summer low flows (Taylor et al., 2013a).

The seasonal freezing of soils that affects ~50% of exposed land in the Northern Hemisphere (Zhang et al., 2003) is an important control on snowmelt infiltration and strongly influences the amount and timing of winter and spring runoff in cold regions (Hayashi, 2013). From 1901 to 2002, the extent of seasonally frozen ground in the northern hemisphere decreased by 7% due to rising air temperatures (Lemke et al., 2007). Climate change also modifies the distribution and extent of permafrost, altering soil moisture, streamflow seasonality, and the partitioning of water stored above and below ground (Walvoord and Kurylyk, 2016). Enhanced thawing of permafrost under climate change decreases the distribution and thickness of permafrost, creating new lateral groundwater pathways that increase the connectivity of aquifers and surface waters (Lamontagne-Hallé et al., 2018). This transition explains the observed paradox in the Arctic of both wetting (i.e. increased baseflow to downslope rivers) and drying (i.e. shrinking of upslope wetlands and lakes).

Sea level rise and salinization of coastal aquifers
Coastal aquifers form the interface between oceanic and terrestrial hydrological systems and provide a critical source of freshwater for people in coastal regions. Global SLR of ~3 mm/year since 1990, relative to ~1 mm/year from 1902 to 1990 (Dangendorf et al., 2017), has induced seawater intrusion into coastal aquifers around the world (Michael et al., 2013). Seawater intrusion depends on a variety of factors beyond SLR, including coastal geology and topography, as well as replenishment and abstraction of fresh groundwater (Stigter et al., 2014). The threat posed by SLR to groundwater is highest for low-lying deltas (e.g. the Ganges-Brahmaputra and Mekong deltas) and islands with limited rates of groundwater discharge, that include Small Island Developing States (SIDS) (Holding et al., 2016).

Seawater intrusion is the consequence of an inland shifting of the freshwater–saltwater interface in the subsurface (Figure 7.4). The impacts of SLR are exacerbated by seawater inundations during storm surges, cyclones (Holding and Allen, 2015; Ketabchi et al., 2016; Shamsudduha et al., 2020) and tsunamis (Villholth, 2013b), causing vertical and lateral intrusion into the aquifer. Atolls (i.e. coral reef islands) are extreme examples of such vulnerable environments (Werner et al., 2017), where fresh groundwater lenses are highly dynamic and heterogeneous due to the combined effects of a complex geology, episodic ocean events, strong climatic variability and human interventions (e.g. LULC change, groundwater pumping).
The impact of SLR alone on seawater intrusion is often small relative to that of groundwater abstraction (Ferguson and Gleeson, 2012). As a result, seawater intrusion is often observed most prominently in heavily exploited coastal aquifers with high population densities (e.g. Jakarta; Gaza, State of Palestine). Intensive groundwater pumping can accelerate seawater intrusion through land subsidence as has been observed in Australia, Bangladesh, China, Indonesia, Saudi Arabia and the USA (Polemio and Walraevens, 2019; Nicholls et al., 2021), where subsidence rates can exceed projected rates of SLR. Low-lying deltas, in which the subsurface is dominated by clayey sediments prone to compaction from the lowering of groundwater tables, are especially vulnerable to seawater intrusion (Herrera-García et al., 2020).

Other direct impacts of climate change on groundwater quality

Climate change presents direct risks to the quality of groundwater, not only as a result of the amplification of precipitation extremes but also through reductions in recharge. Heavy rainfalls (e.g. >10 mm/day) have the potential to amplify recharge and mobilize contaminants such as chloride and nitrate in the vadose zone immediately above aquifers in drylands (e.g. Gurdak et al., 2007) and temperate regions (Graham et al., 2015); further, surface runoff can intercept poorly contained waste and stored chemicals on or near the ground, which then leach into aquifers (WHO, 2018). In areas with inadequate sanitation provision, these events can also serve to flush faecal microbial pathogens and chemicals (e.g. nitrate) through shallow soils to the water table (e.g. Taylor et al., 2009; Sorensen et al., 2015; Houéménou et al., 2020), sometimes aided by preferential flowpaths such as soil macropores (Beven and Germann, 2013). Indeed, recharge from heavy rainfall events in such environments has been associated with outbreaks of diarrhoeal diseases, including cholera (Olago et al., 2007; De Magny et al., 2012). Drought-induced changes to sanitation practices in the town of Ramotswa in semi-arid Botswana led to a switch from water-borne sanitation (flush toilets) to on-site sanitation facilities (e.g. pit latrines), that have amplified the risk of groundwater contamination (McGill et al., 2019).

Reductions in groundwater recharge attributed to climate change in the Mediterranean region (e.g. Stigter et al., 2014) have led to the concentration of solutes such as chloride, nitrate and arsenic in soils and shallow aquifers, due to enhanced evaporation and less dilution (Mas-Pla and Menció, 2019).
The combination of global warming and the heat island effect from urbanization on subsurface temperatures also has implications for groundwater quality, as a result of changes in the solubility and concentration of contaminants such as manganese and dissolved organic carbon (Taniguchi et al., 2007; Riedel, 2019; McDonough et al., 2020). The thawing of permafrost releases greenhouse gases (e.g. methane, carbon dioxide, nitrous oxide) and increases contamination risks from mining operations through increased hydrological connectivity between groundwater and surface waters.

7.2.2 Indirect impacts of climate change

Increases in groundwater withdrawals arise indirectly from climate change as societies strive to adapt to increased ET associated with global warming (Figure 7.1) as well as increased variability and overall declines in soil moisture and surface water availability. Indeed, the impacts of climate change on groundwater may be greatest through its indirect effects on irrigation water demand (Taylor et al., 2013a). Strategies employing groundwater to adapt to more variable (less reliable) precipitation and to meet growing global food demand (Chapter 3) have clear consequences for sustainable groundwater governance and management (Chapters 2 and 10), potentially leading to depletion or contamination of groundwater resources, impacting environmental flows (De Graaf et al., 2019; Jasechko et al., 2021) and jeopardizing groundwater-dependent ecosystems (Chapter 6). Global-scale modelling suggests that between 1991 and 2016, irrigation accounted for ~65% of global freshwater withdrawals and ~88% of consumptive water use (Müller Schmied et al., 2021); groundwater was estimated to comprise 25% of all withdrawals and 37% of total consumptive use. This large-scale redistribution of freshwater from rivers, lakes and groundwater to arable land has led to:

(a) groundwater depletion in regions with primarily groundwater-fed irrigation; (b) groundwater accumulation as a result of recharge from return flows from surface water-fed irrigation; and (c) modifications of local climates as a consequence of enhanced evapotranspiration from irrigated land (Figure 7.1). The expansion of irrigated and rainfed agriculture also complicates the relationship between climate change and groundwater, as managed agro-ecosystems do not respond to changes in precipitation in the same manner as natural ecosystems.

Waterlogging in inland areas, amplified by surface-water irrigation and increased recharge arising from the conversion of natural vegetation to shallow-root crops (Favreau et al., 2009) can lead to rising water tables and soil salinization through upward capillary flow that then evaporates. Many irrigated areas of the world are thus facing the twin problems of soil salinization and waterlogging. These problems currently affect over 20% of the total global irrigated area (Singh, 2021).

7.3 Resilience and vulnerability of aquifer systems to climate change

Groundwater is the world’s largest distributed store of freshwater, with an estimated volume of ~23 million km³ in the upper 2 km of Earth’s continental crust (Gleeson et al., 2016). Although a small fraction of this (less than 6%) is considered ‘modern’ (i.e. replenished less than 50 years ago), this volume (~1.4 km³) is still equivalent to a body of water with a depth of about 3 m spread over the continents, dwarfing all other unfrozen components of the active hydrologic cycle. The relationship between climate change and groundwater systems differs fundamentally from surface water systems, as distributed groundwater storage derives from recharge contributions over periods ranging from years to decades and even millennia (Ferguson et al., 2020). Such residence times of groundwater explain the comparative resilience of aquifer systems, relative to surface waters, to climate variability and change, as demonstrated by groundwater-based solutions to drought (Section 7.4) and long-term lags observed between groundwater withdrawals, depletion and recharge (Cuthbert et al., 2019b). Developing water supplies that are resilient to climate change will, in many parts of the world, involve the use of groundwater conjunctively with rivers, lakes and surface water reservoirs. There is much to be done in terms of optimizing conjunctive management of these sources, including increasing recognition that the systems often are interlinked; in humid areas, groundwater mostly feeds rivers and other surface water systems whereas in drylands ephemeral river flows often replenish groundwater (Scanlon et al., 2016).
7.3.1 Aquifer systems resilient to climate change
The natural resilience of aquifer systems to climate change varies considerably and is controlled primarily by geology, vegetation, topography and climate, both past and present. Aquifer systems comprising thick, expansive sedimentary rock sequences (e.g. limestone, sandstone), which typically transmit and store large volumes of groundwater, are more resilient to climate variability and change than aquifer systems within hard rock environments (e.g. fractured crystalline rocks), which possess more restricted capacities to transmit and store groundwater (Cuthbert et al., 2019b). Aquifer systems in humid regions receiving regular recharge may be more sensitive to climate disturbances such as drought, but also relatively quick to recover. In contrast, aquifer systems in drylands, where recharge is low and episodic, are less sensitive to short-term (seasonal to inter-annual) climate variability, but vulnerable to long-term climate trends from which they will be slow to recover (Opie et al., 2020). The resilience to climate change of water supplies drawn from exploited aquifer systems is also context-specific (Gleeson et al., 2020b) and depends upon the magnitude of groundwater withdrawals, among other factors. For example, low-intensity abstraction for domestic water supplies from low-storage, weathered crystalline rock aquifers receiving recharge annually across humid equatorial Africa is generally resilient to groundwater depletion. Abstraction of largely ‘fossil’ groundwater from regional-scale sedimentary aquifer systems (e.g. Nubian sandstone, Kalahari sands) in African drylands (MacDonald et al., 2021) is climate-resilient but ultimately unsustainable and controlled by the prevailing available groundwater storage.

7.3.2 Aquifer systems vulnerable to climate change
Aquifer systems that are vulnerable to climate change include: those where impacts (outlined in Section 7.2) are largely independent of human withdrawals (examples 1 to 4); and those where the intensity of human groundwater withdrawals plays a key role in amplifying vulnerability to climate change (examples 5 to 8):

1. low-relief coastal and deltaic aquifer systems, such as those found in Asian megadeltas and SIDS24 that are vulnerable to SLR, storm surges and climate change impacts on recharge;
2. aquifer systems in continental northern latitudes or alpine and polar regions where long-term recharge and discharge are impacted by changing meltwater regimes (e.g. Rocky Mountains, Indus basin) and a thawing permafrost (e.g. Canada, Russia) that increases hydrologic connectivity and risks of contamination;
3. aquifers in rapidly expanding low-income cities (e.g. Dakar, Lucknow, Lusaka) and large displaced and informal communities (e.g. in Bangladesh, Kenya, Lebanon) reliant on on-site sanitation provision (e.g. pit latrines, septic tanks), where the increased frequency of extreme rainfall can amplify leaching of surface and near-surface contaminants;
4. shallow alluvial aquifers underlying seasonal rivers in drylands, fed by ephemeral river runoff (Duker et al., 2020), which have a storage capacity that largely depends on the size of the river and thickness of the sand deposits; smaller systems have a limited storage capacity and are highly vulnerable to more variable precipitation, including longer droughts projected under climate change;
5. intensively pumped aquifer systems for groundwater-fed irrigation in drylands (e.g. in northwest India; the California Central Valley and central High Plains, USA; the Souss aquifer, Morocco; the North China Plains) where there is high consumptive use of groundwater and reductions in recharge under climate change could threaten the continued viability of irrigated agriculture;
6. intensively pumped aquifers for dryland cities (e.g. Lahore; San Antonio) where potential reductions in recharge under climate change could threaten the continued viability of public water supplies, given that other perennial sources of water are either limited or do not exist;

7. **intensively pumped coastal aquifers** (e.g. Gaza City; Jakarta; Tripoli), where pumping reduces groundwater levels and substantially enhances saline intrusion beyond that from SLR alone; and

8. **low-storage/low-recharge aquifer systems in drylands** (e.g. Bulawayo; Ouagadougou), where alternative perennial water sources are limited or do not exist, and recharge is episodic so that even small reductions in recharge can lead to groundwater depletion.

7.4 Groundwater-based adaptations to climate change – human responses

Groundwater-based adaptations to climate change exploit distributed groundwater storage and the capacity of aquifer systems to store water surpluses (e.g. seasonal, episodic). They incur substantially lower evaporative losses than conventional infrastructure, such as surface dams. The importance of groundwater as a vital buffer to the impacts of climate change, including not only droughts and increased ET but also more variable soil moisture and surface water (Section 7.3), is expected to increase in the coming decades. The ‘green revolutions’ in Asia have relied on the continued widespread use of shallow groundwater for dry-season irrigation by smallholder farmers and increased regional resilience to seasonal water availability (Schneider and Asch, 2020). In tropical Africa there are growing calls (Cobbing, 2020) to draw from groundwater storage to improve the climate resilience of water and food supplies, in pursuit of the SDGs 2, 6, and 13 among others. Adaptations to climate-driven shortages in water supplies to cities such as Dar es Salaam (Tanzania) in 1997 and Cape Town (South Africa) in 2017 involved not only reductions in freshwater demand but also supply-side strategies that increasingly used groundwater as a climate-resilient source of freshwater that can be used conjunctively with surface water resources (CoCT, 2019). Further, improved community hygiene and sanitation provision can enhance the resilience of groundwater-fed water supplies to climate change in densely populated, low-income communities by reducing risks of faecal contamination (WHO, 2019).

Human responses to climate change employing groundwater-based adaptations include a range of managed aquifer recharge (MAR) strategies to augment freshwater availability (see Section 11.5). Dillon et al. (2019) divide MAR strategies into four broad categories: (a) streambed channel modification, (b) bank filtration, (c) water spreading and (d) recharge wells. Each is described with examples of their application in Box 7.1.

7.5 Groundwater-based climate change mitigation via low-carbon geothermal energy

Geothermal energy is heat stored and transmitted in the subsurface. This section focuses on groundwater as an agent in the storage, movement, and extraction of geothermal energy. The development of geothermal energy plays an important role in reducing CO₂ emissions and enabling transitions to sustainable energy sources. Although high-enthalpy (>150°C) subsurface fluids can be used to produce electricity and heating, lower-enthalpy (40°C to 150°C) groundwater can also be used, primarily for heating. Even shallow low-temperature groundwater (often in the range of 5 to 25°C) can be used to provide low-carbon cooling and heating via ground source heat pumps (GSHPs).

7.5.1 Geothermal energy for low-carbon electricity generation

Geothermal electricity production typically requires deep drilling to access high temperatures, and significant permeability at such depths to allow for the free circulation of fluids. The fluids used may be natural groundwaters within deep sedimentary aquifers (e.g. in Italy and California, USA) or igneous complexes (e.g. in El Salvador, Iceland, Kenya). Alternatively, where rocks have limited permeability, they can be artificially stimulated or hydraulically fractured to allow for the circulation of introduced fluids, forming an Enhanced Geothermal System (EGS, e.g. Soultz-sous-Forêts, France). Generation of electricity conventionally requires production of steam at the surface to drive turbines. Electricity can, however, be generated at lower temperatures (<180°C) in binary cycle systems, with produced hot water used to vaporize organic fluids (e.g. high-pressure butane or pentane) that drive turbines.
Box 7.1 Managed aquifer recharge (MAR) strategies

(a) Streambed channel modification
Streambed channel modification describes infrastructure such as small dams, ponds and tanks that detain surface runoff to supply drinking water and irrigation via directed infiltration, replenishing underlying aquifers. Application of this MAR strategy has a long history in hard-rock aquifers of peninsular India (Boisson et al., 2014) and alluvial plains of Rajasthan in northwest India (Dashora et al., 2018). Other examples include huge recharge dams in Oman that are operated in combination with water spreading in a series of connected recharge basins (Dillon et al., 2019).

(b) Bank filtration
Bank filtration refers to the process of enhanced infiltration of surface water through groundwater abstraction next to rivers and other surface water bodies so that the hydraulic gradient from surface water to the pumping well is increased. As reported by Dillon et al. (2019), the city of Budapest’s water supply is sustained entirely by bank filtrate from the River Danube.

(c) Water spreading
Spreading refers to the use of floodwaters to increase soil moisture for food production on dry cropping land. Water spreading projects employing flood discharges from the River Colorado in Arizona (USA) have shown to increase groundwater storage for dryland cities such as Phoenix and Tucson (Scanlon et al., 2016). In the Netherlands, treated river water from the Rhine is transported by pipeline to coastal dune areas where it is infiltrated as groundwater recharge in basins (Sprenger et al., 2017).

(d) Recharge wells (aquifer storage and recovery, ASR)
Using recharge wells is the practice of injecting water into aquifers via wells and is often referred to as Aquifer Storage and Recovery (ASR) or Aquifer Storage Transfer and Recovery (ASTR). In northern Europe, seasonal (winter) surpluses in surface water collected in reservoirs are often transferred to shallow aquifers via injection wells to sustain anticipated increases in summer water demand (Hiscock et al., 2011). In coastal Bangladesh, the resilience of rural communities to increasing coastal salinity has been improved through the creation of freshwater lenses within shallow partly saline, confined aquifers. This is achieved via the injection of seasonal pond water from flood discharges or rainwater harvested in wells under gravity drainage (Sultana et al., 2015). In Windhoek (Namibia), the resilience of the city’s water supply to climate variability and change has been augmented through the transfer via injection wells of treated, seasonal surface waters into the fractured quartzite aquifer system (Murray et al., 2018).

Source: Based on IAH (2005).
By 2020, around 30 countries were generating a total of 95 TWh of geothermal electricity per year, with a total installed capacity of 16.0 GW. This marks an increase of 3.7 GW over 2015 at an estimated cost of US$10.4 billion. The largest producing nations (in order of total installed capacity) are: the USA, Indonesia, the Philippines, Turkey and Kenya, all of which are known for their active geothermal and volcanic provinces (Huttrer, 2021). The relative growth in wind and solar energy has in recent years outstripped that of geothermal electricity, reflecting the lower cost and perceived risk of the former, and their shorter payback periods. However, geothermal power plants are, contrary to wind and solar energy plants, well suited to producing an electrical base load. Installed capacity is projected to grow by ~20% between 2020 and 2025 (Huttrer, 2021).

7.5.2 Groundwater use for low-carbon heating and cooling

One of the main opportunities provided by lower-enthalpy geothermal energy is its contribution to decarbonizing domestic, commercial and industrial heating and cooling, which accounts for at least 40% of global energy consumption and CO₂ emissions (IEA, 2019b). The installed geothermal capacity for direct (including GSHPs) thermal supply in 2020 was almost 108 GWt, marking a growth rate of ~9% per annum, with 284 TWht per year being supplied (Lund and Tóth, 2020). Leading nations include (in order of installed capacity) China, the USA and Sweden, with Scandinavian nations having a high per capita uptake (mostly due to GSHPs). Of the installed capacity, 78 GWt (72%) was provided by geothermal heat pumps (Lund and Tóth, 2020).

Shallow groundwater (at a depth ranging from 0 to 200 m) typically has a rather constant temperature that is slightly warmer than the annual average air temperature (Figure 7.5). It thus ranges from ~5°C in northern Scandinavia to over 25°C in Sub-Saharan Africa. The temperature typically increases by 2.5 to 3°C for every 100 m of depth, so that at a depth of 1.5 km, temperatures often approach or exceed 50°C. If a transmissive aquifer is present at such depths, the groundwater can be used for the direct heating of individual buildings, multiple buildings (district heating networks), swimming pools, horticulture (greenhouses) or aquaculture. After heat has been extracted from the groundwater via a heat exchanger, the ‘thermally spent’ water is often returned to the reservoir via a reinjection well (or wells) in order to maintain reservoir pressure and to avoid potential surface contamination by unwanted natural solutes. Such an arrangement is termed a well doublet (Figure 7.5 – Fríðleifsson et al., 2008; Banks, 2012; Kramers et al., 2012).

Large modern buildings (offices, data centres, hospitals, etc.) have a large cooling requirement, even in winter and in temperate climates. Many industrial processes also have cooling requirements, and the need for low-carbon cooling will likely increase as climate change progresses. Cool shallow groundwater (e.g. 10 to 12°C in many parts of the United Kingdom) is well suited for receiving surplus heat and effecting cooling, via a well doublet arrangement. Cool shallow groundwater can also be used for heating via GSHP. A heat pump is an electrically powered refrigerant device that transfers heat from a cold medium (e.g. groundwater at 10°C) to a warm medium (e.g. a central heating system at 45°C). Although wind and solar technologies can generate low-carbon electricity, relatively few technologies exist to provide low-carbon heating. The heat pump is a key technology that utilizes electricity highly efficiently to deliver heating and cooling. It may be able to deliver 3.5 kW of heat to a building for every 1 kW of electrical power consumed, resulting in dramatic cost and CO₂ emission reductions. As of 2020, around 6.5 million geothermal heat pumps are thought to be installed worldwide, representing the fastest growing part of the geothermal sector (Lund and Tóth, 2020).

Note that GW (gigawatt) is a unit of power (rate of energy delivery), while TW (terawatt-hour) is a unit of total energy delivered. The subscripts e and t refer to electrical and thermal energy, respectively.

Note that heat pumps do not need groundwater: they can also extract heat from unsaturated/low-permeability soils and rock, from surface water, from sewage and from air.
Use of shallow (low-enthalpy) geothermal technology for heating and cooling is especially attractive in temperate continental climates, where there is a large seasonal air temperature ‘swing’ and where groundwater temperatures are not only much warmer than winter air temperatures but also much cooler than summer air temperatures. Here, surplus heat from cooling processes, injected to the ground during summer, can be stored in the aquifer and recovered to be used during winter. This is termed Aquifer Thermal Energy Storage (ATES). In pioneering nations, such as the Netherlands and Sweden, the ground/groundwater is increasingly seen as just one component (a seasonal source, sink or thermal ‘buffer’) in flexible 5th Generation District Heating and Cooling Networks (e.g. Verhoeven et al., 2014, Buffa et al., 2019).

7.5.3 Impacts, risks and incentives
The environmental impacts of well-designed geothermal systems are limited, but adverse impacts can occur if aquifers are poorly managed. Where reinjection of geothermal fluids is not practised, groundwater storage can be depleted and subsidence can be induced, as observed in Shanghai (China) (Banks, 2012). Where ‘thermally spent’ groundwater is reinjected, risks are lower but local ground movement can still occur, and high densities of heating or cooling schemes can lead to aquifer temperature changes. Net aquifer temperature changes can have environmental impacts and also ultimately make the geothermal resource less suitable for exploitation. For example, the Dutch regulatory framework requires ATES systems to be approximately thermally balanced to avoid such temperature changes (Dutch ATES, 2016). Poorly managed reinjection of groundwater also carries some risk of mixing groundwater resources of good and poor quality, potentially leading to overall deterioration of groundwater quality. For deep geothermal systems, where high reinjection pressures are applied, the risk of microseismicity needs to be carefully monitored (Holmgren and Werner, 2021). In addition to environmental impacts, there can be economic and risk-based limitations to the development of geothermal energy. Costs and project risks tend to increase with depth as the cost of drilling increases disproportionately with depth, while the requisite hydrogeological understanding becomes less certain. Once the well has been constructed, an operator has to face the almost ubiquitous challenge of preventing clogging of the...
reinjection wells, as well as the costs involved in monitoring well performance, temperature and chemistry. As deep drilling to prove new high-enthalpy geothermal resources entails sizeable ‘up-front’ capital expenditure and considerable economic risk of exploration failure, it is debatable whether production of geothermal energy should be subsidized at a given rate per MWh produced. A more appropriate approach may be a government- or industry-backed insurance scheme to underwrite the risks of developing a new geothermal prospect, as has been done in the Netherlands (RVO, 2015).

7.6 Climate change mitigation through carbon capture and sequestration

Carbon capture and sequestration (CCS) is the process of storing carbon in deep aquifers to curb accumulation of carbon dioxide in the atmosphere. It is undertaken because natural carbon dioxide (CO₂) sinks (i.e. forests, oceans and soils) are considered unable to accommodate the increasing amounts emitted by humans and to mitigate their consequences for climate change. CCS reduces CO₂ emissions from point sources such as industrial processes or power generation through the chemical capture of emitted CO₂. This CO₂ is then compressed and injected into subsurface strata at depths in excess of 800 m where prevailing pressures and temperatures are sufficient to convert CO₂ gas into a liquid. Geological sites that are suitable for the storage of CO₂ include deep aquifers and depleted hydrocarbon reservoirs that are overlain by an aquitard. Buoyant (less dense) CO₂ rises and migrates through the formation but is physically trapped by the cap rock (aquitard). CO₂ from single sources are stored on pilot sites for CCS research (e.g. Ketzin, Germany (Wiese and Nimtz, 2019); Lacq, France (Prinet et al., 2013); In Salah, Algeria (Ringrose, 2018); Aquistore, Canada (Lee et al., 2018a)) and operational facilities (Sleipner and Snøhvit, Norway (Chadwick et al, 2012; Ringrose, 2018); Decatur, USA (Finley, 2014); Gorgon, Australia (Trupp et al., 2021)). Projects are also planned at industrial sites, where many emitters of CO₂ can use the same storage site or sites (Porthos, Netherlands; Northern Lights, Norway; Teesside, UK).

Large-scale geological storage of CO₂ (i.e. projects in the order of 1 Mt of CO₂ per year) include the Sleipner and Snøhvit projects in the North Sea and the Quest Project in Canada (Government of Alberta, 2019). At each of these sites, ~1 Mt of CO₂ that would otherwise be released to the atmosphere is captured and permanently stored annually. Extensive saline aquifer formations, both onshore and offshore, have a theoretical capacity to store billions of tonnes of CO₂, although the practical useable capacity will be lower (Bachu et al., 2007; Bradshaw et al., 2007; Bachu, 2015; Goodman et al., 2016; Celia, 2017). As sites are often far from large emission sources and intercontinental transport of CO₂ incurs substantial costs, the economic CCS storage potential is country- and region-specific. In most regions, storage capacities themselves do not pose a constraint to CCS use, but government subsidies are still required to cover the costs. CCS is considered an important tool to reduce emissions from fossil fuels from the industrial sector and, when combined with biomass combustion and direct air capture, to achieve net negative emissions (IPCC, 2014b).
Regional perspectives on groundwater

8.1 UNESCO
Jayakumar Ramasamy, Anne Lilande and Samuel Partey
IAH
Seifu Kebede Gurmessa and Alan MacDonald*

8.2 UNECE
Annukka Lipponen**, Sarah Tiefenauer-Linardon,
Sonja Koeppel, Andreas Scheidleder***
With contributions from:
Sharon Megdal (Water Resources Research Center,
University of Arizona), Nihat Zal (EEA) and Xuan Che (UNSD)

8.3 UNCLAC
Silvia Saravia Matus
CeReGAS
Alberto Manganelli and Lucia Samaniego
UNESCO
Miguel Doria and Camila Tori
With contributions from:
Alba Llavona and Lisbeth Naranjo (UNECLAC)

8.4 UNESCAP
Solene Le Doze and Dennis Lee
With contribution from:
Danielle Gaillard-Picher (GWP)

8.5 UNESCWA
Ziad Khayat, Tracy Zaarour and Carol Chouchani Cherfane
8.1 Sub-Saharan Africa

8.1.1 Introduction
About 400 million people in Sub-Saharan Africa do not have access to even basic water services. The majority of these people live in rural areas (WHO/UNICEF, 2021). Even cities, where household connections are more common, suffer from supply outages and unreliable flow due to high and increasing demand (Healy et al., 2020). Therefore, the overwhelming priority for most countries is to improve access, first to basic services and eventually to safely managed household supplies. However, climate change places a further pressure on available surface water resources, leading to recurrent water scarcity and droughts threatening the progress made so far (Taylor et al., 2013a). Extensive growth in water demand due to population growth and rapid urbanization adds to the pressure, and increases the need for an expansion in climate-resilient water services.

The development of groundwater has thus great potential to satisfy the need for rapidly increasing water supply across Sub-Saharan Africa, both for human survival as well as to promote economic development (Cobbing and Hiller, 2019). Groundwater, as the largest freshwater resource available, is highly reliable to support livelihoods, especially during extended periods of inadequate rainfall or dry spells, and could help to address issues of water scarcity and drought-related shocks (World Bank, 2018a; MacAllister et al., 2020). Groundwater development for drinking water through communal pumps and private household wells is well established in most countries, but development must go much further and faster. Use for irrigation and industry remains low except for some localized areas, like in South Africa, Zambia and Zimbabwe (Pavelic et al., 2012). Under a changing climate combined with economic growth, the biggest priority remains for countries to adopt best practices to develop and manage groundwater resources, in order to meet competing demands while recognizing the important role groundwater plays in sustaining freshwater ecosystems (Tuinhof et al., 2011). This section provides an overview of groundwater resources in Sub-Saharan Africa and the opportunities and challenges for utilizing this important resource.

8.1.2 Status of groundwater
Groundwater forms the basis of water supplies across much of Africa and its development is rising as demand for secure water increases (MacDonald et al., 2021). Groundwater resources in Africa are often considered as having the potential to bring about overall socio-economic transformation (Foster et al., 2012), to overcome current hydrologic variability (Grey and Sadoff, 2007) and to meet future demand. Recent studies call for the ‘sleeping giant’ of groundwater to be wakened (Cobbing and Hiller, 2019) through increased use of shallow groundwater for irrigation (Gowing et al., 2020) and through solar-powered groundwater development for irrigation and piped water schemes (Wu et al., 2017; Gaye and Tindimugaya, 2019).

The promise that groundwater holds is not just aspirational. Extensive hydrogeological investigation across the continent reveals that Africa possesses large groundwater resources. MacDonald et al. (2012), who produced the first quantitative groundwater map of Africa, estimated total groundwater storage in Africa to be 0.66 million km³ (0.36–1.75 million km³). Not all of this groundwater storage is available for abstraction, but the estimated volume is more than 100 times that of the estimated annual renewal of freshwater resources in Africa (MacDonald et al., 2012). Interestingly, with regard to climate change, Cuthbert et al. (2019a) concluded that future climate trends could affect Africa's surface water supplies but might not decrease groundwater resources due to the dependence of recharge on intense rainfall events, which are forecast to increase in the future. Therefore, groundwater is expected to be increasingly used as source of reliable water supply throughout Africa (Giordano, 2009; MacDonald and Calow, 2009). However, heterogeneity in recharge, aquifer storage and permeability will determine which subregions can benefit the most from groundwater. Aquifer storage and recharge determine the resilience of groundwater systems to climate change and thereby determine future water security. According to MacDonald et al. (2021, Figure 8.1, pp. 10–11), "most African countries with little groundwater storage have high annual rainfall and therefore regular recharge. Conversely, many African countries with low rainfall, usually
considered as water insecure, have considerable groundwater storage, which was mostly recharged millennia ago. [...] Several countries, particularly, (but not exclusively) in North Africa have considerable water security when groundwater storage is taken into consideration. This storage provides a significant buffer before abstraction will impact the regional groundwater system”. However, current groundwater pumping will ultimately be at the expense of future generations. The economic, financial and environmental aspects of storage depletion should not be overlooked. Groundwater storage is generally low in West and Central Africa (Figure 8.1). In these subregions, the groundwater storage is replenished regularly and is a reliable source of water, although the limited storage capacity can mean that the countries in this area may be vulnerable to prolonged periods of drought.

Developing groundwater’s potential to generate positive livelihood outcomes depends on many local and regional geophysical and governance challenges. One of the hydrogeological challenges is groundwater quality. Most of the groundwater storage is either fresh or brackish in nature. However, a considerable number of aquifers in arid and semi-arid areas as well as in coastal plains are impacted by geogenic contaminants such as salinity and fluoride (Idowu and Lasisi, 2020). Examples include the saltwater intrusion in coastal plains of North Africa spanning from Egypt to Tunisia. Groundwater in the East African Rift often has high concentrations of fluoride: a study in Ethiopia found that more than 40% of boreholes in the Ethiopia Rift valley has concentrations above the guidelines established by the World Health Organization (WHO) and therefore constitute a major risk to health (Tekle-Haimanot et al., 2006).

Figure 8.1 Groundwater resilience to climate change. High groundwater storage buffers against short-term changes in rainfall, and high average long-term groundwater recharge enable an aquifer to recover rapidly after drought.
Anthropogenic groundwater quality deterioration is also on the rise, caused by factors such as mining activities (e.g. South Africa), poor irrigation practices (e.g. in the Nile Valley and the Senegal River basin) and urbanization (e.g. Nairobi, Accra, Maputo, etc.) (Lapworth et al., 2017). A recent survey across Ethiopia, Malawi and Uganda reveals that nearly 20% of water wells exceeded the WHO standard for bacteriological quality (Lapworth et al., 2020). Groundwater quality problems may be exacerbated by climate change and sea level rise, leading to increased salinization of groundwater systems through evaporative concentration or seawater intrusion. Recharge from intense rainfall events may also increase bacteriological contamination. Because of its diverse geologic setting, the 40,000 km-long coastal zones of Africa are comprised of a myriad of aquifer systems (Steyl and Dennis, 2010) with remarkable differences in the state of saltwater intrusion. Saltwater intrusion induced by overexploitation of coastal aquifers has led to salinity increase in a number of countries, including Egypt, Kenya, Libya, Tanzania and Tunisia, among others.

8.1.3 Availability and usage of groundwater resources for irrigation

Four broad aquifer classes underlie a large part of the Sub-Saharan area and are shown in Figure 8.2 (MacDonald et al., 2012):

1. **Volcanic rocks** – complex multi-layered aquifers underlying much of the Horn of Africa, with variable yields where groundwater generally occurs in fractures;
2. **Weathered crystalline basement** – an extensive but patchy shallow aquifer of low borehole yield, of about 1 l/s, and low storage potential;
3. **Major unconsolidated formations and minor alluvial deposits** – shallow unconsolidated aquifers providing moderate yields and often favourable recharge rates due to their connection to rivers; and
4. **Consolidated sedimentary rocks** – thicker aquifers of variable recharge but with prospects of higher yields at higher drilling costs.

Current use of groundwater for irrigation is limited, partly due to the cost implications associated with groundwater exploration and construction, and difficulties in financing. According to Siebert et al. (2010), only 3–5% of total cultivated land in Sub-Saharan Africa is under irrigation, with the majority concentrated in three countries: Madagascar, South Africa and Sudan. Agriculture is, however, the main source of livelihood for many people. The agricultural sector accounts for about 30% of the gross domestic product (GDP) in Sub-Saharan Africa but employs about 65% of the population, the majority of whom are women (World Bank, 2018a), yet crops are produced almost entirely under rainfed conditions. Given the importance of the agricultural sector in Africa, any improvement in the sector has the potential...
of transforming the living conditions of the population. The development of groundwater could act as a catalyst for economic growth by increasing the extent of irrigated areas and therefore improving agricultural yields and crop diversity, and ultimately transforming the entire value chain (Schoengold and Zilberman, 2007).

8.1.4 Challenges related to groundwater exploitation

Despite the great potential for groundwater development in the Sub-Saharan region, several factors hamper an increased use of the resource. Most of these challenges are common across countries. The main governance challenge is to overcome inertia in the institutional setup. Up until the last decade, groundwater has received little attention from policy-makers. For instance, while South East Asian countries tapped their groundwater resources to transform agricultural activity in the 1970s and 80s, there was no such effort in Africa. Africa has also missed many other landmark global groundwater development trends. Globally, many countries started building groundwater databases and developing hydrogeological maps in the 1980s, but these are still rare in Africa. Regular monitoring of groundwater levels or quality, the first step to groundwater management, is restricted to only a few countries (IGRAC, 2020). There are few universities that teach groundwater as a subject, and few professional bodies for hydrogeologists or drillers. Data and information sharing is still in its infancy, despite the rapid growth and availability of data capturing tools. Regulatory frameworks to protect and safeguard groundwater at national levels are either weak or not enforced. There are signs that groundwater is beginning to be taken more seriously, possibly due to the realization of the major role that groundwater plays in achieving water supply targets. For example, several continental-, regional- and national-level initiatives have recently been established. These include, for example, the South African Development Community’s (SADC) Groundwater Management Institute, and the Groundwater Desk Office and its associated groundwater programme within the African Ministerial Council on Water (AMCOW).

Finance continues to be a critical issue for developing groundwater resources. The funding gap between current spending and what is required to achieve Sustainable Development Goal (SDG) 6 is highest for Sub-Saharan Africa, where the achievement of universal water supply would require ten times the current level of investment of US$13.2 billion (Watts et al., 2021). A large proportion of this amount is required for operation, maintenance and rehabilitation of existing systems, which often fail to attract funding.

Qualified personnel with the capacity to conduct hydrogeological and geophysical studies is rare. Therefore, work is often carried out by semi-skilled personnel, which often results in poor-quality construction or inappropriately sited boreholes, leading to long-term problems with functionality. For siting and constructing the higher-yielding boreholes required for large-scale irrigation or town supplies, the complex hydrogeological environment found in much of Africa demands considerable expertise, which – again – is difficult to find. The general lack of groundwater professionals impacts the staffing of institutions and of local and national government offices in many countries, hampering emerging initiatives to oversee effective groundwater monitoring, planning and development.

The nature of the groundwater resources can also be a challenge for groundwater development. Much of the continent is underlain by crystalline rock aquifers, which generally limits borehole yields to less than 1 l/s. Several countries in East Africa are underlain by volcanic rock aquifers, which have limited storage and complex flow paths (Figure 8.2). The large sedimentary aquifers of Northern Africa are generally located far from the point of need. Groundwater quality in the East African Rift can be a challenge due to the elevated fluoride levels, and the anthropogenic contamination in urban areas is often compounded by poor sanitation. Widespread contamination from nitrate or pesticides has not yet been identified, although this may follow the patterns observed in other parts of the world as agricultural practices intensify. Although still often cheaper to treat than surface water, costs for treating groundwater are likely to rise.
8.1.5 Case studies and best practices

There are many examples of groundwater development across Sub-Saharan Africa. Box 8.1 gives the example of Cape Town and the measures the city took to ensure that the taps continued to flow. Historically, Cape Town depended on surface water sources to meet its water needs. However, increase in population coupled with climate change caused a water shortage crisis, and groundwater became part of the solution.

Box 8.1 Cape Town water supply crisis

Cape Town is South Africa's second-largest city with a population of about 3.7 million people. Six reservoirs in the mountains around Cape Town supply most of the city's water, storing a combined maximum of about 900 million m³. Beginning in 2015, a severe drought reduced the volumes stored in these reservoirs to critical levels. Without good rains in 2018, there was a real possibility of a 'Day Zero', when the city's taps would run dry.

Cape Town responded to the crisis in several ways. Leaks in the system were reduced to about 17%, half of the national average. Campaigns and water restrictions halved total water use in the city to about 200 million m³/year. Temporary desalination plants and emergency groundwater bolstered the supply (with 6 million m³/year and 55 million m³/year, respectively). Stand-alone boreholes were drilled at schools, hospitals and other important locations to reduce their vulnerability to Day Zero.

In 1990, the Nairobi City Council closed down wells used to supply water to the city when surface water supply from the Tana River (with a capacity of 520 Ml/day) was commissioned. However, in 2002, supply mains failure (due to a landslide), coupled with persistent high leakages and fiscal losses from the distribution system, meant that the demand from the city could no longer be met and water availability was reduced to below 200 Ml/day. As a result, many boreholes were drilled and capacity increased to about 300 Ml/day. As such, this (mainly) private drilling has managed to mitigate a water supply crisis (Tuinhof et al., 2011).

Another tool used in the region is the Managed Artificial Recharge (MAR) of aquifers, which involves landscape modification or infrastructure development to enhance water infiltration into the ground for use during dry periods (see Box 7.1 and Section 11.5). An example of this technology is its adoption in Windhoek (Box 8.2).

8.1.6 Opportunities and responses from the region

It is clear that opportunities exist in Sub-Saharan Africa for the increased development of groundwater resources to meet the growing demand caused by population and economic growth, rapid urbanization, and the increasing demands of irrigation. As climate change continues to affect precipitation patterns, causing increasing pressure on the existing surface water resources, groundwater offers the buffering capacity to protect against these uncertainties and provide a more reliable water supply. The conjunctive use of groundwater and surface water offers considerable potential, with groundwater supplies adding resilience and capacity to existing surface water resources, especially in rapidly growing cities (Jacobsen et al., 2013).

However, the increasing development of groundwater may threaten the ecosystem service that groundwater provides as baseflow to rivers and aquatic ecosystems. Already, baseflow has been shown to reduce in Nairobi, where groundwater has been extensively developed (Oiro et al., 2020), and groundwater discharge to rivers from abandoned mines has caused extensive contamination in South Africa (Ochieng et al., 2010). Transboundary aquifers also require particularly management, but in many circumstances, they promote joint working and understanding, rather than causing conflict.
The further development of groundwater in Sub-Saharan Africa is not currently limited by a lack of groundwater, but rather by a lack of investment. There is a pressing need to find ways to unlock the potential of groundwater, in order to help develop sustainable livelihoods and achieve equitable growth. This involves investments in infrastructure, institutions, trained professionals and knowledge of the resource.

Technological advancements (such as Earth observation, renewable energy and advanced drilling methods) can support the development of groundwater, but must be accompanied by a strong professional groundwater community, to get the best from the technologies.

Historically, investments in groundwater were viewed less favourably than surface water schemes, since much of the infrastructure was invisible and therefore thought more subject to corruption. However, studies in Sub-Saharan Africa have shown that groundwater development does not suffer disproportionately from corruption (Plummer, 2012). Investments to promote safer and more efficient construction standards will be necessary to improve the functionality of water points. Investments in the institutions required to manage groundwater are also necessary to ensure that future developments do not threaten the sustainability of the resource.

The characteristics of groundwater resources and their availability vary between and within pan-Europe and North America, reflecting the differences in geology and hydrology (see the Prologue, Figure 6). This chapter briefly describes groundwater abstraction in the different subregions, the particularities of governance in each, and a few pressing challenges specific to groundwater (e.g. pollution).

8.2.1 Abstraction and use of groundwater resources

The share that groundwater makes up of the total withdrawal of freshwater varies greatly per country across pan-Europe and North America, ranging from 1 to 100% (Figure 8.3).

In 2017, 24% of total water abstraction in the area of the European Union, Iceland, Liechtenstein, Norway, Switzerland and Turkey was from groundwater (EEA, 2019). Groundwater makes up an important source of household water: some 75% of the European Union’s (EU) inhabitants depend on groundwater for their water supply (European Commission, 2008). For the purposes of industry and agriculture (irrigation), groundwater is also important.

Box 8.2 Windhoek’s Managed Artificial Recharge (MAR) scheme

Windhoek (Namibia’s capital) receives annual rainfall of 360 mm, making it one of the driest capital cities on Earth. In the early 1990s, Windhoek’s existing water sources (three dams and a groundwater wellfield) began to struggle to meet growing water demands. Studies showed that new sources of water, such as desalinated seawater that would have to be pumped from the coast, were far away and would be costly to develop.

City planners responded with an innovative set of solutions: during times of surplus, treated water was stored underground in aquifers, so that it was protected from evaporation and could be used during times of shortage. Windhoek also began to reuse a proportion of its wastewater, treating it to drinking water standards at a new treatment plant. Other strategies employed included demand management, aimed at identifying leaks, restricting garden watering and increasing public awareness. Windhoek then began to operate a ‘dual pipe’ water supply in some areas: semi-purified sewage from an old water treatment plant was distributed to sports fields, parks and cemeteries for irrigation, further saving potable water. Windhoek’s MAR scheme and other water management actions have proved far less expensive than other water supply solutions, and made Windhoek a world leader in the sustainable use of reclaimed water, and in MAR.

Source: Adapted from World Bank (2018a, Box 7, p. 36).
Figure 8.3 Fresh groundwater abstracted as a percentage of total (gross) freshwater abstracted in selected countries (latest year available)

Source: UNSD, based on data from Eurostat, OECD and the UNSD Environment Questionnaire.
In the USA, the abstraction of fresh groundwater in 2015 was estimated to amount to 311.5 million m³/day, about 8% more than in 2010 (Dieter et al., 2018), while total freshwater withdrawals have been trending downward since 2005. In Canada, 30.3% of the population relies on groundwater for municipal, domestic and rural use (Government of Canada, 2013).

8.2.2 Evolving management and governance of groundwater

Table 8.1 provides an indicative overview of some regional integration aspects of groundwater governance in the subregions discussed in this chapter.

<table>
<thead>
<tr>
<th>Subregion</th>
<th>European Union (EU)</th>
<th>Eastern Europe, Caucasus and Central Asia</th>
<th>North America</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of regional integration and consistency of approaches to groundwater governance</td>
<td>The Water Framework Directive (WFD) and the Groundwater Directive incorporate an integrated approach to surface water and groundwater. Regional harmonization and policy coherence are fostered by the EU Common Implementation Strategy, including its Working Group on Groundwater.</td>
<td>Historically, the area had a common approach, which has diversified over time within the countries. Groundwater commonly falls under different authorities than surface water. There is some uptake, progressively, of the WFD approach (groundwater bodies etc.) in the neighbourhood of the EU.</td>
<td>Decentralization: Individual (federated) states (USA) and provinces and territories (Canada) play a key role in groundwater management. There are significant differences between the states of the USA in terms of groundwater policy, also regarding linking to surface waters.</td>
</tr>
</tbody>
</table>

The environmental objectives of the EU Water Framework Directive (WFD), which has since the year 2000 provided a regional legal framework in water policy, oblige the EU Member States to prevent deterioration of good status and protect, enhance and restore good groundwater status, involving consideration of both quantitative and chemical status (Box 8.3).

The WFD requires identifying and characterizing groundwater bodies and – in conjunction with monitoring data – to assess the impacts of human pressures on groundwater. It also addresses the risks of failing to meet environmental objectives, and establishes measures for achieving and keeping good quantitative and chemical status. The WFD has contributed to harmonizing approaches to delineating and assessing groundwater bodies (GWBs), also in the EU’s neighbourhood (Box 8.4).

In a number of countries of Eastern Europe, the Caucasus and Central Asia, the principle of integrated management of surface water and groundwater has been until recently missing in water laws. Better protection was needed as, for example, licensing of abstraction was insufficiently used and monitored (UNECE, 2011). In many of these countries, groundwater monitoring and assessment degraded after the break-up of the Soviet Union, even if some countries maintain a strong scientific-technical tradition. Georgia is a case in point: there were no centralized monitoring activities from 1990 to 2013, and since 2013 monitoring stations have been gradually added or reactivated, with different projects’ support (EUWI+, 2020). Frequent political and administrative changes have in many cases resulted in fragmentation, and groundwater monitoring and assessment is still commonly separated from overall water management.

In the USA, there have also been substantial changes in groundwater governance, and there are significant differences between the individual states’ legal frameworks for groundwater, including in how the hydrologic connection between surface water and groundwater is reflected (Megdal et al., 2014). Most legal frameworks treat water quantity and quality separately, with separate state agencies in charge (Gerlak at al., 2013). In California, the Sustainable Groundwater Management Act (California Department of Water Resources, 2014) introduced a statewide groundwater governance framework that established local Groundwater Sustainability Agencies. These have frontline responsibility for developing and implementing regulatory
Box 8.3 Quantitative and chemical status of groundwater bodies in the European Union

During the second cycle of River Basin Management Plans (2016–2021) in the EU, the status of groundwater bodies was assessed (EEA, 2018a; see Figure below), showing that a good chemical status has been achieved for 74% of groundwater bodies (GWBs, a management unit), while good quantitative status had been achieved for 89% of the groundwater bodies (EEA, 2019). For a good quantitative status, the available groundwater resource should not be reduced by abstraction, but also impacts on linked surface water or groundwater-dependent terrestrial ecosystems, among others, should be avoided.

Quantitative and chemical status of groundwater bodies

(a) Proportion of groundwater body area by country in good quantitative status and failing to achieve good quantitative status

(b) Proportion of groundwater body area by country in good and poor chemical status

Note: (*) Regional average; AT (Austria), BE (Belgium), BG (Bulgaria), CY (Cyprus), CZ (Czech Republic), DE (Germany), DK (Denmark), EE (Estonia), ES (Spain), FI (Finland), FR (France), GR (Greece), HR (Croatia), HU (Hungary), IE (Ireland), IT (Italy), LT (Lithuania), LU (Luxembourg), LV (Latvia), MT (Malta), NL (The Netherlands), NO (Norway), PL (Poland), PT (Portugal), RO (Romania), SE (Sweden), SI (Slovenia), SK (Slovakia) and UK (United Kingdom).

Source: EEA (2018a), based on data reported by the EU Member States under the Water Framework Directive.
controls concerning groundwater management (Kiparsky et al., 2017). In Canada, the Constitution defines that provinces and territories have primary legal jurisdiction over water and groundwater, while the federal Government has powers to manage groundwater on federal lands, including national parks (Rivera, 2014).

For the 42 countries sharing waters in Europe and Northern America, legal and institutional frameworks for transboundary cooperation increasingly cover aquifers. Out of the 36 countries sharing transboundary aquifers in the region, 24 have reported that operational arrangements cover 70% or more of their transboundary aquifer area (UNECE/UNESCO, 2021). The institutional and legal frameworks, notably the Convention on the Protection and Use of Transboundary Watercourses and International Lakes, have strengthened cooperation in the region (Lipponen and Chilton, 2018).

8.2.3 Groundwater-related challenges and opportunities
Three challenges that either affect groundwater resources, and therefore the uses and socio-economic activities that depend on them, or in which groundwater is part of the solution, are illustrated with examples below: climate change and water scarcity, groundwater-dependent ecosystems and, lastly, pollution, including emerging pollutants.

Climate change and water scarcity
States across the region are grappling with the challenge of dealing with water abstraction pressures, further aggravated by climate change, and groundwater is a crucial resource in this regard, providing some possible solutions.

In 2015, during the summer months, 33% of the population in the region covering the European Union as well as Liechtenstein, Norway and Switzerland was exposed to water stress conditions27 (EEA, 2019). The EU member States are exchanging information on good practices to deal with water abstraction pressures, taking into account climate change. A guidance document on MAR is under development in the EU.

The measures foreseen by the Government of Kazakhstan (2018) aim to reduce water scarcity, both at the national and regional levels, allocate transboundary water resources, use groundwater efficiently and sustainably, build new infrastructure, increase the forest cover of catchment areas, and implement environmental releases.

In the USA, declining groundwater levels and conflicts between users are among the top common priorities for groundwater governance that state agency officials have identified (along with water quality and contamination) (Megdal et al., 2014; Petersen-Perlman et al., 2018).

27 As defined here, ‘water stress’ occurs when the percentage of water use against renewable freshwater resources in a given time and place (in this example at river basin level) exceeds 20%.
Water marketing has been studied in the USA as a means to provide a financial incentive for groundwater right holders to invest in water conservation in order to make a profit on the unused water or on the transfer to other users. In the state of Arizona, decreased water availability has led to the use of effluent as an alternative source, while statutory changes authorize long-term tradable storage credits through aquifer recharge from the Colorado River water or effluent (Bernat et al., 2020).

Groundwater-dependent ecosystems

In the EU, the River Basin Management Plan cycle ending in 2021 shows that the linkage between groundwater and its associated aquatic ecosystems and groundwater-dependent terrestrial ecosystems is increasingly considered by the Member States. This serves to better identify such ecosystems, to further consider quantity and quality aspects, and to continue establishing appropriate groundwater threshold values derived from ecosystem needs. Progress is supported by technical reports (e.g. European Commission, 2011, 2014a, 2015).

MAR provides ways to take advantage of subsurface storage in aquifers for variable flows (see Box 7.1 and Section 11.5). Environmental non-governmental organizations (NGOs) quantify groundwater recharge to local aquifers, as well as its ecosystem benefits and flood risk reduction, which helps create partnerships with multiple benefits. In California, farmers can receive monetary compensation for recharging groundwater in the early fall when water is particularly scarce. Such controlled flooding practices also provide critical temporary wetland habitats for shorebirds migrating along the Pacific Flyway, which often have nowhere to stop over on long migrations (The Nature Conservancy, n.d.). Further experience from the USA shows that water funds have allowed to protect green space in and around local communities and, in the case of the Edwards Aquifer in Texas which supplies the city of San Antonio, to improve quality of the water that is recharging aquifers (The Nature Conservancy, 2019).

Groundwater quality, pollutants and health risks

The pollutants that most commonly cause poor chemical status in the EU are nitrates as well as pesticides. While pollutants from agriculture dominate (and this problem is not limited to Europe), industrial chemicals and substances related to mining also lead to chemical groundwater pollution in several river basin districts (Figure 8.4 – EEA, 2018b). More information is needed concerning ‘new’ (or ‘emerging’) pollutants in groundwater. A process of establishing a ‘Watch List’ for substances in groundwater started in line with EU Directive 2014/80/EU (amending the Groundwater Directive, 2006/118/EC, under the WFD umbrella) to both “increase the availability of monitoring data on substances posing a risk or potential risk to bodies of groundwater, and to facilitate the identification of substances, including emerging pollutants, for which groundwater quality standards or threshold values should be set” (European Commission, 2014b). So far, pharmaceuticals, per- and polyfluoroalkyl substances (PFAS) and non-relevant pesticide metabolites have been considered.

In many countries of Europe, groundwater is principally used for drinking water, which underscores the need to control water quality for potential health risks. In the framework of the UNECE/WHO Protocol on Water and Health (UNECE/WHO, 2019). Reflecting a more widely emerging issue, the Netherlands reported the management of new substances, such as pharmaceuticals, microplastics and nanoparticles among the challenges of concern to groundwater, along with surface water (OECD, 2019a). In one study in the USA, at least one hormonal or pharmaceutical compound was detected in 6% of 844 groundwater sites used for public supply, suggesting that the aquifers had limited vulnerability to contamination by these compounds (Bexfield at al., 2019). However, some of these emerging organic pollutants and their metabolites may pose a threat to groundwater bodies, possibly for decades under certain conditions, due to long residence times (Lapworth et al., 2012).
In Eastern Europe and the Caucasus, a limited scope of monitoring (substances and/or frequency) and/or the restrictive way it has been laid down in legislation is sometimes hindering the application of a risk-based, cost-efficient monitoring approach (surveillance and operational monitoring).

8.2.4 Responses to groundwater challenges
The diverse legal and governance systems result in different solutions being deployed in the European Union, Eastern pan-Europe (Eastern Europe, Caucasus and Central Asia) and North America (Table 8.2). In addition to the need for collaboration among different water users in a given region, there is an increasing awareness of the transboundary nature of many groundwater resources, and, therefore, of the need for interjurisdictional cooperation (see Chapter 12).

UBA (unpublished).
Like groundwater quantity, groundwater quality concerns are paramount. Studies and research from the region have revealed groundwater quality problems, including due to emerging pollutants. In order to have cost-effective and sustainable monitoring in the long term, some priorities have to be set to strike a balance between having sufficient coverage of monitoring but also adequate attention to specific pollutants. Groundwater monitoring and expertise is commonly held by specialized institutions, while the implementation of the water policy instruments (for example WFD, as indicated in Table 8.1) calls for cooperation between institutions. Indeed, many pressures and drivers are the same for ground- and surface water. Integrated policies and efforts to ensure coherence are being developed.

8.3.1 Introduction
In Latin America and the Caribbean, groundwater represents a relevant water source as it discharges approximately 3,700 km³/year into the region’s rivers (Campuzano et al., 2014). This translates into 10,200 m³ per capita/year of renewable groundwater resources, representing just over a third of the average per capita water endowment per year in the region. In addition, due to the relative abundance of surface water and the limited level of groundwater use, less than 30% of the freshwater abstracted comes from groundwater sources. For the countries that do rely on groundwater, approximately half of the extraction is used for irrigation, a third is for domestic use and the rest is for industrial use (Aguilar-Barajas et al., 2015). Reliance on groundwater supplies is likely to increase in coming years due to population growth, urbanization and climate change, among other factors.

In arid and semi-arid zones, groundwater represents a key and strategic resource (Espindola et al., 2020; UNESCO, 2007). This is particularly the case in the so-called Dry Corridor of Central America as well as in Mexico City, among other areas. However, throughout the region there are shortcomings in groundwater’s protection and monitoring, giving way to its intensive exploitation and/or contamination, ultimately endangering its sustainability (Campuzano et al., 2014) as well as the water access of the most vulnerable populations, who depend on these groundwater sources for their drinking water supply (WWAP, 2019). See Figure 8.5 for an overview of the groundwater resources and recharge levels in the region.

8.3.2 Main groundwater uses
In northern and central Mexico, northeast Brazil, the coasts of Peru and Chile, and the pre-Andean zone of Argentina, groundwater is mainly used for irrigating crops in the most arid areas (Foster and Garduño, 2009). Groundwater and the subsoil that contains it play an important role in the water supply systems of most Latin American cities, and not only in those where groundwater is the main source of supply (e.g. León, Lima, Mexico City).
City, Natal, San José and São Paulo, among several others). In countries like Costa Rica and Mexico, groundwater supplies 70% of households in urban areas, and practically sustains all domestic demand in rural areas. It also represents 50% of the water used by the industrial sector (Campuzano et al., 2014). In other countries, aquifers are hardly exploited due to lack of information and other factors (UNESCO, 2007). The mining industry in the region also uses groundwater intensively and competes over it with the agricultural and domestic sectors. In Chile, for instance, 63% of the water used by the mining sector comes from groundwater. Groundwater use in mining represents an important risk of aquifer pollution, which can occur if there are wastewater leakages (Ruz et al., 2020).

8.3.3 Groundwater management challenges
Several countries, including parts of Argentina, Brazil, Mexico, Paraguay and Peru face significant overexploitation and contamination of their groundwater. Mexico has tried multiple approaches to improve the management of its overexploited aquifers (Arroyo et al., 2015). Throughout the region, the most common groundwater quality problems are associated with unwanted elements of natural origin (mainly arsenic and fluoride), anthropogenic pollutants (nitrates, faecal pollutants, pesticides), various compounds of industrial origin (mining by-products, organochlorine solvents, hydrocarbons, phenolic compounds, etc.), and emerging pollutants, such as cosmetics, antibiotics, hormones and nanomaterials. For example, in Bolivia, the quality of groundwater is being threatened by industrial, agricultural and domestic pollution, while in Honduras, the high demand for water in urban areas threatens the future availability of this resource (Ruz et al., 2020).

The above-mentioned challenges result in an increase in the number of conflicts over access to and use of water in the region. These conflicts are frequently related to water management decisions across different users, and/or land access conflicts, or revolve around the impacts of activities concerning mineral ores and the extraction of building materials, fossil fuels, climate justice or energy projects. It is estimated that the number of conflicts related to groundwater pollution and depletion that started between 2000 and 2019 is more than four times higher than those started between 1980 and 1999 (ICTA-UAB, n.d.).

8.3.4 Challenges specific to Small Island Developing States (SIDS) and other coastal areas
In the Caribbean, where surface water tends to be relatively scarce, groundwater represents about 50% of the water abstracted. Countries such as the Bahamas, Barbados and Jamaica rely heavily on groundwater resources as their main source of water supplies. In Barbados, groundwater even represents 90% of the total supply, in Jamaica this is estimated at 84%, and in Saint Kitts and Nevis it is around 70%. However, in Grenada, Dominica and Saint Lucia groundwater is hardly utilized, which illustrates the variability across the Caribbean. Overexploitation of aquifers, saline intrusion and pollution pose major threats to groundwater resources in this subregion, turning them into unsustainable sources. “A major challenge facing water resource managers as well as service providers is the difficulty associated with being able to determine the safe yields of aquifers and to undertake regular assessments of the yield-demand balance. Often the required hydrogeological data, the models and the skilled personnel are all in short supply” (Cashman, 2014, p. 1192).

In Belize, as well as in many other coastal areas of the region experiencing rapid urban growth, the effects of saline intrusion threaten groundwater quality (Campuzano et al., 2014; IGRAC, 2014; Ruz et al., 2020). In addition, climate change and variability, particularly the increased frequency and intensity of hurricanes, also pose greater threats to Caribbean SIDS, due to

29 In Buenos Aires, where the use of groundwater has decreased significantly as a result of ‘surface water imports’, sanitary and drainage problems began to occur in several large areas (Foster and Garduño, 2009).

30 Efforts to collect and analyse information, the use of planning and modelling tools, policy-oriented programmes to reduce the overdistribution of water rights, and elimination of rural electricity subsidies.

31 Forests, agriculture, fisheries and livestock management.
Groundwater resources
- in major groundwater basins
- in areas with a complex hydrogeological structure
- in areas with local and shallow aquifers

Special groundwater features
- area of saline groundwater (>5 g/l total dissolved solids)
- natural groundwater discharge area in arid regions
- area of heavy groundwater abstraction with over-exploitation
- area of groundwater mining

Figure 8.5
Recharge rate in main groundwater systems of Latin America and the Caribbean

storm surge and well infiltration. Freeport, the capital of the island Grand Bahama, presents an example in case. The town is totally supplied by groundwater. In 2019, the passage of Hurricane Dorian caused storm surges that flooded the main wellfields of the island, salinizing its waters to brackish levels. Although elevated salinity values do not cause immediate health problems, even if ingested, brackish water is very unpleasant to consume (Chaves, 2019).

8.3.5 Monitoring, management and governance

In Latin America and the Caribbean, monitoring networks vary in modality. Some countries have national monitoring programmes, such as Brazil, Chile, Colombia, Costa Rica, El Salvador, Mexico, Peru and Venezuela. Others have local networks, like Argentina, while Bolivia, Paraguay and Uruguay monitor aquifers of specific interest (i.e. the Pura-Purani, Patiño and Raigón aquifers – Ruz et al., 2020). Besides enhanced coverage, frequency and continuity of monitoring tools and systems, the sustainable management of groundwater resources also requires technical knowledge, institutional changes, legal and economic instruments, and social participation. In this respect, a formal system of groundwater usage concessions and rights can directly contribute to the rational allocation, and in some cases to the reallocation of groundwater. Charging groundwater extraction fees can be also an important demand management tool, but it requires a transparent and accepted common basis for quantifying water extraction and use (Foster and Garduño, 2009). Finally, it is also important that information from surface waters be crossed with groundwater, as both resources are often interdependent.

Through the Internationally Shared Aquifer Resources Management (ISARM) Americas programme (UNESCO, 2007; UNESCO/OAS, 2010), 52 transboundary aquifer systems with different degrees of knowledge have been identified in the region.

The Amazon Aquifer System underlies an area estimated to cover 3.95 million km² (OTCA, 2018). The Brazilian National Water Agency (ANA) conducted studies to expand the hydrogeological knowledge of the Amazon Aquifer System in Brazil (SAAB), the largest in the country and one of the largest in the world. The SAAB consists of Cretaceous to Cenozoic sediments of a sandy, silty and clayey nature that cover the hydrogeological provinces of the Amazon and Orinoco. It is part of a transboundary aquifer system that underlies parts of Bolivia, Brazil, Colombia, Ecuador, Peru and Venezuela. In Brazil, it has an area of 2 million km² in the states of Acre, Amapá, Amazonas, Pará, Rondônia and Roraima, with an estimated permanent reserve of 124,000 km³, located in the sedimentary basins of Marajó, Amazonas, Solimões and Acre. The Brazilian states of Pará and Amapá, frequently affected by droughts, rely on this source for 79% and 64% of their freshwater withdrawals respectively (UNESCO, 2007; UNESCO/OAS, 2010; Hu et al., 2017).

The Guarani Aquifer System (GAS) is a transboundary aquifer shared by four countries in Latin America: Argentina, Brazil, Paraguay and Uruguay. The GAS covers an estimated area of 1.09 million km² (OAS, 2009). In regional terms, from the replenishment zones (GAS outcrop areas) to the discharge zones, GAS groundwater tends to flow from north to south, accompanying the orientation of the Paraná Sedimentary Basin. In 80% of the area, the GAS is confined by basaltic rocks, with old to very old water (from 4,000 to >100,000 years – Sindico et al., 2018). The exploitation of groundwater has been intense in some areas, due to the expansion of economic activities and the pollution of surface waters, as well as periodic droughts. Some 80% of the groundwater that is pumped up is used for public water supply, 15% for industrial processes and 5% by geothermal spas (Foster and Garduño, 2009). One of the main features of the GAS is its governance arrangement (Box 8.5).

Another important aquifer is the Pantanal Transboundary Aquifer System, located in the Paraguay River basin. The estimated area of the aquifer is approximately 141,500 km² (102,000 km² in Brazil, 21,500 km² in Bolivia, 18,000 km² in Paraguay) (UNESCO/OAS, 2010). This aquifer system stands out for its key role in the maintenance of the Pantanal ecosystems, the natural regulation of the rainfall regime, and the water supplies of local communities and indigenous populations. Because it is an unconfined aquifer, it is vulnerable to pollution, mainly related to agricultural and livestock activities (García, 2015). In the last decade, it has been
threatened by excessive sedimentation in the rivers and in wetlands, caused by accelerated erosion due to deforestation in the highlands and soy plantations. This sedimentation reduces the infiltration and the consequent recharge capacity (UNESCO, 2007).

In 2006, the ISARM-Americas identified a transboundary aquifer called Esquipulas-Ocotepeque-Citalá, located in the tri-national Trifinio area shared by El Salvador, Guatemala and Honduras. The Governance of Groundwater in Transboundary Aquifers (GGRETA) project, aimed at acquiring experience in good governance and management of groundwater, took this aquifer as a demonstration project. In its research on the aquifer, all the available information about the transboundary aquifer was compiled, ordered, analysed, prioritized and systematized, resulting in the identification of information gaps. This study has shown that what was originally supposed to be a single aquifer is, in fact, composed of two aquifers (the Esquipulas and the Ocotepeque-Citalá aquifers) in the valley floor of the upper Lempa River basin. These two aquifers maintain their transboundary character. The Esquipulas Aquifer is shared trilaterally and the Ocotepeque-Citalá system is shared bilaterally by El Salvador and Honduras. In this context, there is growing pressure for adequate monitoring and governance agreements.

An additional innovative feature of the GGRETA project is that it incorporates a gender perspective in monitoring, evaluation, and reporting on water. Sex-disaggregated indicators include: male/female perceptions on the adequacy of the current water availability in quality and quantity; male/female perceptions of gender equality in household decisions on water, sanitation and hygiene (WASH); and the presence of women in cooperatives and industries related to water (UNESCO, 2016).

To conclude, sovereign states with both national and transboundary aquifers will require frameworks that help ensure the sustainable use of groundwater resources. In the case of transboundary settings, the latter may require the development and maintenance of supranational institutions, but that alone does not ensure an equitable and sustainable use (see Chapter 12). Similarly, national institutions require both information and authority to foster sustainable usage. The region needs to move towards political processes that harmonize decision-making, monitoring and groundwater management both nationally and internationally. The importance of aquifers for the region’s ecosystems, social development and economic activities will only further increase in the near future due to climate change and its impacts on the water cycle. While regional groundwater resources remain relatively abundant, there is an urgent need for improved management and governance to ensure their sustainable usage. Thus, research, fieldwork and monitoring are expected to close existing knowledge gaps and provide a stronger basis for informed and coordinated decision-making.
8.4.1 Overall hydrogeological setting

Asia and the Pacific is the largest region in the world in terms of both area (28 million km²) and population (4.7 billion). Groundwater serves as an important source of freshwater supply and has played a key role in the region's socio-economic development. However, the unsustainable abstraction of groundwater resources, coupled with the impacts of climate change, have led to aquifer depletion and increased water scarcity in a number of areas. Additionally, groundwater quality is under threat due to a variety of anthropogenic and geogenic drivers that further contribute to water stress in the region.

The occurrence of groundwater resources varies across the region due to its various geological settings. Sedimentary aquifers, mainly composed of floodplain alluvial deposits, run along large rivers such as the Ganges, Mekong and Yangtze, and provide favourable conditions for groundwater productivity. In the mountainous regions of Central and Northern Asia, groundwater generally occurs in aquifers made of jointed hard rocks. Although the arid areas of Central Asia receive little precipitation and have high evaporative conditions, the thawing of snow and glaciers in the high mountains provide essential groundwater recharge. Aquifers composed of carbonate rock are widely distributed in Southeast Asia, developed karst systems composed of stratified limestone can be found in southern China and parts of the Indochinese peninsula, and aquifers under the Circum-Pacific islands are composed of Quaternary volcanic rock (Lee et al., 2018b; Villholth, 2013b). Figure 8.6 illustrates the region's groundwater resources and recharge.

8.4.2 Groundwater significance

The Asia-Pacific region is the largest groundwater abstractor in the world, containing seven out of the ten largest groundwater-extracting countries: Bangladesh, China, India, Indonesia, Iran, Pakistan and Turkey (see Table 5.1). These countries alone account for roughly 60% of the world's total groundwater withdrawal (Aquastat, n.d.). The critical driver of groundwater development in the region is rising demand for water due to growing populations, rapid economic development and improving living standards. Utilization of groundwater resources has provided numerous benefits for irrigation, industrial activity, domestic use, drought resilience and livelihood enhancement. These socio-economic benefits have been particularly crucial for the agricultural sector – a sector that is key to economic development in many developing countries in the region, and that accounts for an estimated 82% of total water withdrawals (Aquastat, n.d.). Rapid growth of groundwater irrigation, particularly in the North China Plain and South Asia between 1970 and 1995, was the main driver of the agrarian boom in the region (Shah et al., 2003). Serving as a critical resource for irrigation, groundwater contributes towards food security and poverty alleviation. The region's dependence on groundwater is associated with the increase in food productivity or the lack of surface water supply. For instance, from 1960 to 2015, India's population nearly doubled and along with it, the country's food production index increased by 330% (Lee et al., 2018b). While irrigated agriculture's dependence on groundwater is evident throughout South Asia and China, the industrial and municipal sectors are also major users of groundwater in urban centres (Kataoka and Shivakoti, 2013). Groundwater is also the preferred source of water for drinking and irrigational needs in South Asia, as surface water channels were historically used as pathways for domestic and industrial waste, making it unfit for consumption (Mukherjee, 2018). Additionally, aquifers provide high buffering capacities against climate variations, which help to stabilize water supply during peak drought seasons.

8.4.2 Challenges

Groundwater is abundant across most of the Asia-Pacific region, but yet, groundwater depletion has led to concerns over the sustainability of groundwater usage in different areas across Central Asia, China, South Asia and certain urban centres in Southeast Asia (Jia et al., 2019; Kataoka and Shivakoti, 2013; Lee et al., 2018b; Mukherjee, 2018). Severe depletion threatens food production, livelihoods and industrial water supplies, and causes land subsidence, seawater intrusion and ecological damage. Climate change also impacts...
precipitation variability in the region, further exacerbating pressure on groundwater resources, particularly in areas with semi-arid to arid climates and on Pacific SIDS, where groundwater forms the only reliable source of freshwater but is threatened by rising sea levels (Ashfaq et al., 2009; Asoka et al., 2017; Bouchet et al., 2019; Dixon-Jain et al., 2014). Furthermore, as groundwater extraction is expected to increase in the future due to intensified water demand from economic and household activities, while groundwater recharge will diminish due to climatic variations, the risk of water shortages is also expected to increase (Hofmann et al., 2015).

<table>
<thead>
<tr>
<th>Groundwater resources</th>
<th>Groundwater recharge (mm/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>in major groundwater basins</td>
<td>very high 300</td>
</tr>
<tr>
<td>in areas with a complex hydrogeological structure</td>
<td>high 100</td>
</tr>
<tr>
<td>in areas with local and shallow aquifers</td>
<td>medium 20</td>
</tr>
<tr>
<td>in regions with a complex hydrogeological structure</td>
<td>low 2</td>
</tr>
<tr>
<td>in areas with local and shallow aquifers</td>
<td>very low 0</td>
</tr>
</tbody>
</table>

Special groundwater features
- area of saline groundwater (>5 g/l total dissolved solids)
- natural groundwater discharge area in arid regions
- area of heavy groundwater abstraction with over-exploitation
- area of groundwater mining

Geography
- selected city
- selected city, largely dependent on groundwater
- major river
- large freshwater lake
- large saltwater lake
- continuous ice sheet

Besides groundwater depletion, groundwater contamination from both anthropogenic and geogenic processes is an additional problem of equal concern, as water that is unfit for consumption also contributes to water stress in the region (Hirji et al., 2017; MacDonald et al., 2016). The mobilization of geogenic contaminants such as arsenic (Indo-Gangetic basin aquifer, Red River delta, Mekong River delta), fluoride (Pacific islands, southern peninsular India, Sri Lanka, central and western China) and uranium (China, India) poses significant health risks to people across the region (Coyte et al., 2018; Hara, 2006; Ministry of Environment of Japan/IGES, 2018; Le Luu, 2019; Mukherjee, 2018). Anthropogenic contaminants in groundwater, such as heavy metals (i.e. cadmium, chromium, lead, mercury), coliform, salinity and emerging
contaminants32 are an increasing problem (Lapworth et al., 2018; Sui et al., 2015) as rapid urbanization, seawater intrusion, intensive agriculture and industrial activity continue to increase in the Asia-Pacific region. Additionally, disinfection by-products (DBPs) require attention as chlorinating groundwater with halides and dissolved organic carbon (DOC) may promote the formation of toxic DBPs in drinking water (Coyte et al., 2019).

Rapid economic and population growth compounded with poor planning and inadequate governance has resulted in overexploitation and water quality degradation in certain areas, threatening the lives and livelihoods of populations that depend on this vital resource (Kataoka and Shivakoti, 2013; Lal et al., 2020; Shah et al., 2003). For instance, the Kharai River basin in Mongolia is an area undergoing important economic and industrial development – with positive economic benefits derived from mining, agriculture, animal husbandry and tourism – but these activities, combined with accelerating urbanization, contribute to increasing groundwater pollution (Hofmann et al., 2010, 2015).

Pollution associated with the overuse of agricultural chemicals has been shown to affect groundwater quality well below the surface. In the North China Plain, nitrates have been detected at 24 metres in depth (Chen et al., 2005).

It is therefore critical that continued development and utilization of groundwater must be done in a sustainable manner, in order to reduce the pressure on these resources. While management practices and institutional, legal and regulatory systems to address groundwater issues exist throughout the Asia-Pacific region, groundwater governance is met with challenges due to its unrestricted open access in many countries across the region (Kataoka and Shivakoti, 2013). Thus, improved groundwater governance, with popular support and enforcement capacity, is urgently needed. Problems with groundwater depletion, land subsidence and groundwater contamination require urgent action and transboundary cooperation, in order to mitigate current negative trends and to ensure future water security in the region.

8.4.4 Responses

Groundwater systems and the activities that rely on them are complex. Therefore, proper understanding of an aquifer’s hydrogeological conditions, water demand, and social and economic needs are necessary for effective policy-making. While there is no one-size-fits-all solution for the various challenges groundwater systems may face, there are a number of actions and pathways that national governments can take to address these issues. Below are three examples of actions taken by governments to address their groundwater challenges.

Groundwater recharge in Rajasthan (India)

Rajasthan, India’s most arid state, is prone to frequent droughts and highly dependent on groundwater for both irrigation and drinking needs. With erratic rainfall, overexploitation of groundwater and the highest evaporation losses in the country, agricultural communities in the region face increasing challenges in meeting their water needs. In 2016, the government of Rajasthan launched Mukhyamantri Jal Swavlamban Abhiyan (MJSA), a programme to help rural communities become self-reliant in meeting water needs. Focusing on MAR (see Box 7.1 and Section 11.5), the programme constructed irrigation tanks, dams, trenches and other water harvesting structures to capture runoff. The programme also promoted water conservation through micro-irrigation and improved the watershed by planting trees in barren wastelands and developing pastures. Interim results after two monsoons showed that out of 21 non-desert districts, 16 districts saw an increase of groundwater levels by an average of 1.4 m. Internal impact assessments also reported that participating villages reduced water transportation (i.e. water tankers) by 56% compared to non-participating villages (Verma and Shah, 2019).

32 Emerging contaminants consist of pharmaceuticals, pesticides, industrial chemicals, microplastics, surfactants and personal care products.
Groundwater depletion interventions in the North China Plain

The North China Plain has one of the lowest water resources availability per capita in both China and the world. Rapid economic development over the past 40 years was sustained by groundwater exploitation, resulting in severe groundwater level decline limiting further development in the region. In recent years, multiple water management plans have been implemented to address this issue. Actions include harvesting rainwater, diverting river water from the south, promoting water-saving irrigation technologies, subsidizing drought-resistant crops and ‘Grain for Green’ projects. As a result of these and other measures, the rate of groundwater decline appears to have been reduced in Beijing and part of Hebei province (Shao et al., 2017; Xu et al., 2018; Zhao et al., 2020).

Kiribati’s adaptation programme

The Republic of Kiribati is mainly comprised of low-lying atoll islands with a total area of 726 km², located in the central and western Pacific Ocean. Kiribati is one of the smallest and most remote, geographically dispersed and climate change-vulnerable countries in the world. The country is subject to frequent, prolonged droughts while rising sea levels significantly threaten the country’s freshwater supply (rainwater and shallow unconfined groundwater). Throughout the country, clean, safe drinking water is mainly sourced from thin, fresh groundwater lenses floating on denser seawater within the aquifer. Due to the fragile nature of these lenses, if the balance of the lenses is disturbed due to droughts or over-abstraction, the groundwater becomes brackish and unfit for drinking and irrigation. From 2011 to 2018, the Government of Kiribati made several efforts to build the country’s resilience to climate change at the national, island and community levels, with support and contributions from development partners.

Scaling up measures from the previous two pilot phases, Phase III of the Kiribati Adaptation Program (KAP) implemented a holistic approach that included:

• improving water use and management by installing rainwater harvesting systems, in addition to groundwater abstraction systems utilizing horizontal infiltration pipes placed at shallow depths to abstract water within the freshwater lens;
• reducing water leakages and waste in existing systems;
• protecting water reserves;
• improving long-term planning for local-level water management;
• protecting against coastal erosion by investing in protection, such as seawalls and mangrove planting; and
• strengthening government and community capacity to manage the impacts of climate change and natural hazards through a national Coastal Management Policy, in addition to locally managed Adaptation Plans.

Evaluation reports indicate that through the project, the number of people with access to improved water sources rose from the baseline of 5,000 (from 2017) to 12,780, exceeding the project’s original end target of 11,000 people by 116%. Rehabilitation efforts for existing water systems detected and eliminated water losses of 645 m³/day and combined engineering and nature-based measures provided 1.87 km of coastal erosion protection (World Bank, 2019).

33 Officially known as the Conversion of Cropland to Forest Program (CCFP), the programme pays farmers to plant trees on their land and provides degraded land to rural families to restore.
34 projects.worldbank.org/en/projects-operations/project-detail/P112615.
8.5 The Arab region

8.5.1 Regional setting

The Arab region is one of the most water-scarce regions in the world. In 2020, 19 out of 22 Arab states fall below the threshold for renewable water scarcity of 1,000 m³ per capita/year, with 13 states situated below the absolute water scarcity threshold of 500 m³ per capita/year (UNDESA, 2020; Aquastat, n.d.). It is expected that by the year 2050, 17 Arab countries will be below the absolute water scarcity threshold (UNDESA, 2020; Aquastat, n.d.). This has pushed countries to draw upon other conventional and non-conventional water resources to meet their freshwater needs. Groundwater is the most relied-upon water source in at least 11 of the 22 Arab states and accounts for more than 80% of the freshwater withdrawals in Libya, Djibouti, Saudi Arabia and Palestine (Figure 8.7) (Aquastat, n.d.).

Groundwater in the region also tends to extend over large geographic areas and across political boundaries. Most groundwater resources in the region are non-renewable, and must be managed with a view to the fact that they are a finite resource. However, monitoring groundwater extraction remains difficult, despite the emergence of new technologies. This complicates the management of groundwater, particularly in a transboundary context. All Arab states except for the Comoros draw upon one or more transboundary groundwater resource, with 42 transboundary aquifer systems covering almost 58% of the Arab region’s area (Figure 8.8). The Nubian Sandstone aquifer has an area of 2.17 million km² with a storage of 373,000 billion m³ shared between Chad, Egypt, Libya and Sudan (Bakhbaki, 2006).
Close cooperation is needed to ensure that transboundary aquifers are properly managed. Unfortunately, only very few cases of groundwater cooperation exist in the region. Jordan and Saudi Arabia signed an agreement of cooperation on the Al-Disi/Saq-Ram aquifer in 2015, aiming to ensure proper management, utilization and sustainability of the groundwater, under the supervision of a joint technical committee. Cooperation on the transboundary Nubian aquifer, which is shared by Chad, Egypt, Libya and Sudan, is pursued through a Joint Authority tasked with the study and development of the groundwater. Cooperation and data exchange in the North Western Sahara Aquifer System (NWSAS) shared by Algeria, Libya and Tunisia is facilitated through a consultation mechanism hosted by the Sahara and Sahel Observatory (OSS) (UNESCWA, 2019).

8.5.2 Groundwater-related challenges

Population growth, socio-economic development and climate change are increasing groundwater stress and threatening the water security in the region. The over-extraction of groundwater in many parts of the region has led to groundwater table declines, especially in highly populated and agricultural areas. This is especially alarming as groundwater is the primary source of water for vulnerable groups that are not formally connected or have access to other water sources.

Figure 8.8 Transboundary aquifer systems in the Arab region

![Transboundary aquifer systems in the Arab region](image)

Source: UNESCWA (2015, Map 2, p. 33). © UNESCWA.

to public sources of water. Analysis from Gravity Recovery and Climate Experiment (GRACE) mission data has confirmed an overall declining trend in groundwater storage in the Arab region. In fact, groundwater storage anomalies from the mean (2004–2009) show that the area undergoing a decline in groundwater storage had increased by 75% in October 2011 and by 100% in October 2018 when compared to October 2002, whereas it had increased by 65% in April 2011 and by 95% in April 2019 when compared to April 2002 (Figure 8.9). This depicts not only the significant decreasing trend in groundwater storage between 2002 and 2019 (Figure 8.9 – graph), but also highlights the seasonal variability effect on groundwater storage combined with the excessive groundwater withdrawals in the dry period. Furthermore, depletion of groundwater in aquifers and specifically in aquifers with non-renewable groundwater resources has been estimated at 317% of the renewable volume in the Member States of the Gulf Cooperation Council (Al-Zubari et al., 2017).

Figure 8.9 Change in groundwater storage (liquid water equivalent thickness) in the Arab region between 2002 and 2019 using GRACE mission data (in cm)

Source: Compiled by UNESCWA, based on McStraw (2020) and on GRACE 2.0 (n.d.).
Another major stress that threatens the availability of good-quality fresh groundwater is contamination. Unsustainable agricultural practices, as well as industries and urbanization, are significantly impacting groundwater quality. Groundwater salinity is the most frequently observed groundwater quality problem observed in coastal cities where over-abstraction results in seawater intrusion. For example, the Umm er Radhuma-Dammam aquifer system has brackish to saline water in its coastal area that includes parts of Bahrain, Kuwait, Qatar, Saudi Arabia and the United Arab Emirates (UAE), with a Total Dissolved Solids (TDS) value higher than 1 g/l (UNESCWA/BGR, 2013).

Climate change is further affecting groundwater availability through decreased aquifer recharge and a decline in surface water availability, leading to increased pumping. Drawing upon regional climate modelling projections to inform hydrogeological modelling, the United Nations Economic and Social Commission for West Asia (UNESCWA) found that the groundwater table of the Ben Tadla aquifer in Morocco is expected to decrease from between 10 m to more than 25 m under different climate scenarios between 2020 and 2100, leaving some aquifer areas completely dry (UNESCWA, forthcoming).

Groundwater governance limitations in the Arab region complicate the response to these challenges. A regional diagnostic report on groundwater governance in the region noted inadequate or lacking groundwater policies and legislations, combined with inadequate political will for their implementation. Other governance challenges include limited funding, weak institutions and coordination, weak monitoring systems, and lack of information, resulting in poor understanding of groundwater systems (Al-Zubari, 2014).

8.5.3 Innovations

Growing awareness of the increased importance of and dependency on groundwater has led some Arab countries to seek new ways to managing this vital resource. In Morocco, aquifer contracts have been introduced as a new participatory groundwater management measure to enhance sustainability based on local needs (see Box 8.6). Traditional knowledge also continues to be applied, such as aflaj, which are ancient tunnels used to convey water by gravity for irrigation – mostly from groundwater sources. In Oman, more than 3,000 functional aflaj conveyors continue to supply water for agriculture. Communal practices and traditional arrangements also support the fair distribution of water to stakeholders from one generation to the next (Ministry of Regional Municipalities, Environment & Water Resources of Sultanate of Oman, 2006).

Many Arab countries are also increasingly pursuing MAR (see Box 7.1 and Section 11.5) to offset groundwater depletion and improve groundwater quality. For example, in Tunisia, treated wastewater has been released to an infiltration basin for MAR in the Korba aquifer since 2008. The results showed some improvement in terms of groundwater salinity, but clogging lowered the effectiveness of this method (Jarraya-Horriche et al., 2020). In Qatar, three types of MAR are being implemented. The first one consists of recharge through wells located in depression areas where rainwater accumulates naturally; this is implemented in non-urban areas to recharge the groundwater basins. The second type uses recycled water, mainly treated wastewater, to recharge deep boreholes in the Doha basin. The third type collects and treats urban stormwater and mixes it with shallow groundwater to recharge deep wells in the Doha aquifer in order to reduce salinity (Al-Muraikhi and Shamrukhl, 2017). The UAE started pursuing work on MAR in 2001, with the Nizwa project in Sharjah as the first example of successful Aquifer Storage and Recovery (ASR) for an unconfined aquifer in the UAE (Sharjah Electricity and Water Authority, 2015). Abu Dhabi then became home to the world's largest ASR initiative (see Box 8.7), using desalinated water to recharge a desert dune sand aquifer near the Liwa oasis. The water stored here can be recovered under emergency conditions (Stuyfzand et al., 2017). In Oman, Saudi Arabia and the UAE, check dams built on riverbeds to divert runoff and recharge aquifers remain the most commonly practiced MAR approach in the region.
Other countries are still testing artificial recharge approaches or are implementing them at a smaller scale. For instance, Kuwait has been studying and piloting ASR on the Dammam and the Kuwait group aquifers since the 1980s, using desalinated water and treated wastewater (Al-Rukaibi, 2010). In Bahrain, a recent study identified six optimal sites to apply MAR through rainwater harvesting (Kadhem and Zubari, 2020). In Lebanon, preliminary assessments were completed for 22 sites using natural water sources (rivers and springs), and ten sites using treated wastewater, in order to recharge 12 groundwater basins that are either being depleted or contaminated with seawater. The technique for recharge was mainly injection through wells, because of its suitability in a karstic environment and its cost-effectiveness (UNDP/Ministry of Energy and Water of Lebanon, 2014).

The importance of groundwater for the Arab region's water security under a changing climate demands improved governance through innovative management approaches, enhanced use of technologies, dedicated funding for better understanding of the resource, and heightened regional cooperation.

Box 8.6 Morocco aquifer contracts

Morocco is facing increasing water insecurity, which has contributed to unsustainable groundwater use. In response, in 2006 the government adopted a new management approach that issues aquifer contracts to all groundwater consumers in a designated aquifer region. Under this participatory framework, agreements are forged among local stakeholders, including governmental organizations, public institutions, agricultural water users' associations and research institutions, to identify needs and secure mutual benefits in order to improve groundwater management and availability. This was in direct departure from centralized management arrangements administered at the national level.

The use of aquifer contracts was first piloted in the Souss Massa-Draa River basin, which includes three aquifers. The Souss aquifer contract signed between the government and the concerned stakeholders in 2006 sets jointly defined general water use goals, but with a particular focus on groundwater, and includes a listing of the agreed-upon necessary activities that need to be accomplished in order to achieve these goals. Local stakeholders have a shared responsibility for the sustainability of the groundwater, which represents an incentive for the implementation and development of the aquifer contract.

The Souss aquifer contract resulted in the signing of the Framework Agreement for the Protection and Development of Water Resources in the Souss-Massa Basin, which was followed by six additional Specific Partnership Agreements agreed to by local stakeholders. These outlined specific goals and activities inspired by the Framework Agreement (Closas and Villholth, 2016).

This aquifer contract approach is the first in the Arab region and shows the opportunities presented by decentralization and the integration of local water users in participatory decision-making processes. However, in order to translate this participatory approach into concrete results, more needs to be done in ensuring inclusivity of small farmers, including women and marginalized groups, not to mention harmonization of policies across sectors.

Box 8.7 MAR application in Abu Dhabi

The Liwa project in the United Arab Emirates was launched in 2004 and is the largest MAR project in the world. Aquifer Storage and Recovery (ASR) is applied, which consists of infiltrating desalinated water into a desert dune sand aquifer and recovering the water under emergency conditions, without treatment. The recharge process started in 2015 and the aquifer reached full capacity in 2017.

The Liwa ASR system is not typical, as ASR usually only consists of wells. Instead, this application is comprised of three underground recharge basins, which are each surrounded by 105 recovery wells. The aim is to infiltrate 26,500 m³/day of desalinated water for 824 days with a concentration of total dissolved solids (TDS) below 250 ppm, and to be able to recover the water at a rate of 170,280 m³/day for 90 days with a TDS of approximately 400 ppm in case of emergencies. The tested recovery efficiency ranges between 60 and 85%, and demonstrated the ability of MAR to reduce disaster risks and support the emergency response.

Source: Stuyfzand et al. (2017).
Chapter 9

Building and updating the knowledge base

UNESCO-IHP
Bruce Misstear* and Alice Aureli

IGRAC
Arnaud Sterckx, Claudia Ruz Vargas, Konstantin Scheihiing and Neno Kukurić

With contributions from:
Viviana Re (IAH), Christina Copeland (CDP), Aldo Fiori and Christophe Cudennec (IAHS), and Kerstin Danert (Ask for Water GmbH on behalf of the Rural Water Supply Network)

* Affiliated with Trinity College Dublin
A sound groundwater knowledge base is essential for efficient and sustainable decision-making. Since emerging as a science in the 19th century, hydrogeology has relied on a set of methods and tools aimed at assessing groundwater resources at different scales, and across various environmental and societal settings.

Groundwater data obtained through regular monitoring allow for the identification of trends and patterns in groundwater systems, which is indispensable for modelling/simulating current processes, or for predicting possible future conditions by means of scenario analysis. Outcomes of model calculations should always be accompanied by uncertainty analyses. Collected data and generated information need to be shared with all those who rely on groundwater or are engaged in its management. Moreover, building the knowledge base and applying it in the field or at the management decision-making level require adequate training of groundwater specialists.

While groundwater assessments require sufficient and reliable data, their acquisition can often be challenging. However, significant progress in the field of hydrogeology has enabled a broad understanding of aquifer properties and of the physical and chemical principles governing groundwater flow and contaminant transport. In parallel, various methods and tools for data acquisition and analysis have been developed (e.g. aquifer testing, geophysics, hydrological and hydrochemical surveying, numerical modelling). Although there are still scientific questions that warrant additional attention, research is advancing fast, pushing forward the horizons of hydrogeology and, by adopting an interdisciplinary approach, bridging gaps with other disciplines such as environmental sciences, sociology, health care, economics, law and politics. In addition, increasing attention is being paid to strengthening the cooperation among various stakeholders via transdisciplinary approaches like socio-hydrogeology (Re, 2015; Hynds et al., 2018). Scientific knowledge in hydrogeology and the methods and tools available are sufficient to address most groundwater management issues, like siting wells, optimizing abstraction and predicting its effects at the local and regional scale, preventing contamination, etc. The challenge lies more with the scarcity of reliable data for area-specific groundwater assessments and scenario analyses, especially in low-income countries, and with the limited dissemination of data, information and knowledge among researchers, practitioners and decision-makers.

Since all aquifers and their boundary conditions are unique, there is always a need for groundwater assessments at field level to enable informed policies and management of groundwater resources. Groundwater studies that are limited to the physical groundwater systems, where only aquifer characteristics (including inputs and outputs) are considered, are ranked here under the category hydrogeological characterization. Studies that include other aspects, be they environmental (e.g. groundwater-dependent ecosystems), socio-economic (e.g. gender aspects and costs of water supply), legal (e.g. regulations) and/or institutional (e.g. capacity, authorization), are described here as groundwater system assessments. Groundwater system assessments at the regional/continental/global scale are primarily based on the aggregation and upscaling of local assessments.

9.2.1 Hydrogeological characterization

Hydrogeological characterization encompasses the estimation of aquifer parameters and variables, including the extent of the aquifer (e.g. depth, thickness) and its hydrogeological properties (hydraulic conductivity, storativity, etc.). The variables are about input (recharge), output (discharge) and the state of the aquifer. The recharge comes chiefly from precipitation (and also from surface water inflows), whereas discharge takes place via springs and baseflow to surface water, evapotranspiration (in shallow aquifers), and through abstraction wells. The main variables depicting the state of the aquifer are groundwater levels, and groundwater quality variables such as water temperature, pH and electrical conductivity (an indirect measure of salinity). Table 9.1 provides a listing of parameters frequently included in groundwater quality monitoring.
Because the subsurface is usually made of different geological units with different hydraulic properties, groundwater can have a range of physical and chemical properties at different locations and at different depths. As groundwater recharge and discharge are complex processes that vary in space and time, reliable numerical estimates can only be made on the basis of detailed field observations.

However, direct observations of groundwater and the subsurface are limited mostly to wells and springs, where only a few data can be measured, such as groundwater level, well yield, spring discharge and groundwater quality. Other data are estimated via indirect methods, including pumping tests, geophysics, dye tracing, recharge estimation methods and numerical modelling. These estimates come with some degree of uncertainty, and different estimation methods can yield a range of different outcomes. This applies even for the estimation of a major variable like groundwater recharge (Scanlon et al., 2002; Healy, 2010; Walker et al., 2019). Estimates of hydraulic parameters like hydraulic conductivity or storativity can differ by an order of magnitude depending on the pumping tests and interpretation methods used. Furthermore, some variables and parameters are rarely quantified in the field through direct or indirect methods: they are instead extrapolated based on common values available in published sources.

Table 9.1
Parameters frequently included in groundwater quality monitoring

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic care parameters</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>pH</td>
<td>Acidity</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>NO₃</td>
<td>Nitrate</td>
</tr>
<tr>
<td>Cl</td>
<td>Chloride</td>
</tr>
<tr>
<td>Supplementary parameters at lower frequency</td>
<td></td>
</tr>
<tr>
<td>Ca, Mg, Na, K</td>
<td>Major cations</td>
</tr>
<tr>
<td>Cl, HCO₃, SO₄</td>
<td>Major anions</td>
</tr>
<tr>
<td>TDS</td>
<td>Total dissolved solids</td>
</tr>
<tr>
<td>Microbiological monitoring of drinking water sources</td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td>Faecal coliforms</td>
</tr>
<tr>
<td>FS</td>
<td>Faecal streptococci</td>
</tr>
<tr>
<td>E Coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>Supplementary parameters (required in specific hydrogeological settings)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Fluoride</td>
</tr>
<tr>
<td>Fe</td>
<td>Soluble iron</td>
</tr>
<tr>
<td>As</td>
<td>Soluble arsenic</td>
</tr>
<tr>
<td>Mn</td>
<td>Soluble manganese</td>
</tr>
<tr>
<td>U</td>
<td>Soluble uranium</td>
</tr>
<tr>
<td>P</td>
<td>Orthophosphate</td>
</tr>
<tr>
<td>NH₄</td>
<td>Ammonium</td>
</tr>
<tr>
<td>Additional parameters (if specific agricultural or industrial pressures identified)</td>
<td></td>
</tr>
<tr>
<td>Specific pesticides</td>
<td>Heavy metals</td>
</tr>
<tr>
<td>Selected volatile organics</td>
<td>Certain emerging contaminants</td>
</tr>
<tr>
<td>Selected hydrocarbons</td>
<td></td>
</tr>
</tbody>
</table>

Source: Adapted from IAH (2017, p. 6).
Due to the diversity and complexity of its processes, it is often difficult to recognize the role of groundwater and adequately incorporate it into decision-making processes.

9.2.2 Groundwater system assessment

As highlighted in previous chapters, groundwater plays an important role in a variety of environmental and societal aspects and processes, from wetlands to food production, and from health and sanitation to combatting climate change. Due to the diversity and complexity of its processes, it is often difficult to recognize the role of groundwater and adequately incorporate it into decision-making processes. Therefore, groundwater systems need to be assessed in the context of relevant societal and/or environmental issues, in an interdisciplinary fashion, by complementing hydrogeological characterization with environmental, socio-economic and perhaps policy/institutional analyses. Next to provisioning services (i.e. water supply to households, agriculture and industry), groundwater also provides regulatory (e.g. aquifer buffering capacity), sociocultural (e.g. thermal baths) and supporting services (e.g. land subsidence prevention) (see Figure 1.3). All these aspects need to be taken into consideration when assessing groundwater systems.

Data required for an interdisciplinary assessment are very diverse and come from different sources. Some sociological data relevant for interdisciplinary assessments (such as gender considerations in connection with water supply) can be collected in the field from well owners and groundwater users, together with hydrogeological data. The engagement of local communities during groundwater assessments promotes the subsequent adoption of groundwater management measures that fit their needs, which turns out to be key for the sustainability of such measures. This approach is promoted by the socio-hydrogeology network36 of the International Association of Hydrogeologists (IAH) (see also Re, 2015).

36 For more information, see: sociohydrogeo.iah.org.
Figure 9.1
An example of a hydrogeological map and a cross-section

Source: Adapted from Matheswaran et al. (2019, fig. 2, p. 2186).
9.3 Groundwater monitoring

9.3.1 In-situ monitoring

Groundwater needs to be monitored over time in terms of quantity and quality, in order to learn about the behaviour and state of aquifers, and to identify possible negative changes such as over-abstraction, reduced recharge (including climate change effects) and pollution. Groundwater levels, as indicators of the quantitative status of the groundwater system, are monitored in wells (Figure 9.2), manually or with automatic recorders (data loggers). Additionally, loggers can be equipped with sensors that allow for a telemetric transmission of data to a database. Groundwater recharge is usually estimated, while several components of groundwater discharge (well abstraction, spring discharge, river baseflows) can in principle be monitored, using different methods and devices.

Groundwater quality monitoring involves sampling wells and springs. Because the chemistry of a groundwater sample can change quickly once groundwater reaches the surface, certain unstable parameters (such as pH and water temperature) need to be measured on the spot (wellhead or spring), while the full analyses are normally carried out on samples brought to a laboratory. Where laboratories are not available locally, field kits can be used.

Groundwater monitoring programmes need to be planned according to well-defined objectives, which determine what parameters must be monitored (Table 9.1), how, where and how often. The objectives of national monitoring programmes are usually to provide data about the long-term state and trends of groundwater, and inputs for water policy planning (IGRAC, 2020). A groundwater quality monitoring programme seeks to assess natural or anthropogenic changes in water chemistry and microbiology. Other objectives could be to investigate specific pollution issues, or a targeted study area. Detailed local-scale monitoring of spring flows and groundwater levels is especially important for groundwater-dependent ecosystems.

In many countries, groundwater monitoring is the responsibility of public institutions such as water ministries and environmental protection agencies (IGRAC, 2020), although other organizations, like water companies and research institutes, might have their own monitoring...
Groundwater monitoring programmes need to be planned according to well-defined objectives, which determine what parameters must be monitored how, where and how often.

Groundwater monitoring is challenging due to the hidden and three-dimensional nature of groundwater flow, the usually long travel time of groundwater and the complexity of contaminant transport. Separate observation boreholes (Figure 9.3) or clusters of piezometers within one borehole at different depths may be required as water levels and hydraulic gradients may vary between (and within) aquifers (Misstear et al., 2017). The location of the monitoring wells plays an important role too. Groundwater samples need to be taken at specific locations and depths due to the (often) complex hydrogeology; moreover, nearby pollution sources or the construction methods adopted for the monitoring boreholes may strongly influence the results obtained. In addition, the frequency of observation needs to be well defined according to the monitoring objectives and the assumed time series characteristics of the monitored variable. Groundwater levels should be recorded at sufficiently frequent intervals to identify seasonal variations and long-term trends arising from changing abstraction patterns or climate variations. Sampling frequency will also depend on the groundwater flow system and the land use pressures on groundwater quality. Highly vulnerable aquifers that provide services to people and the environment need to be monitored more frequently. For all these reasons, groundwater monitoring programmes should be defined carefully and be based on solid hydrogeological knowledge, including a sufficiently detailed conceptual model of the aquifer under consideration.

Although often relatively expensive, monitoring is a wise investment: identifying problems at an early stage can be highly cost-effective (Kim and Kim, 2019), allowing mitigation measures to be introduced before serious deterioration of the resource takes place.
Conventional monitoring programmes can be augmented by citizen science initiatives, where volunteers take additional measurements/samples. Manual sampling can be supported with new technologies, such as smartphone apps for data collection, which make paper forms obsolete and hence decrease errors in data handling. Citizen science goes beyond just taking measurements: engagement of the public (e.g. via semi-structured interviews) and capacity-building for in-situ measurements can help ensure the integration of local know-how into hydrogeological assessments (Re, 2015). In doing so, one-way communication from the scientific community towards the civil society can be avoided. Although mainly applied to surface water so far, citizen science is gradually finding its way to groundwater applications as well, including through projects in Lebanon (Baalbaki et al., 2019) and India (Maheshwari et al., 2014).

9.3.2 Remote sensing

Remote sensing (airborne and satellite observations) is widely used to study and predict hydrological processes. Since changes in surface water bodies can be detected directly from remote observations, remote sensing has found a broad application in hydrological science and the management of rivers and lakes. Remote sensing techniques have also been used by the scientific community to improve the monitoring and estimation of groundwater resources (Güntner et al., 2007; Scanlon et al., 2002, 2012b; and Shamsudduha et al., 2017). Notably, the outcomes of the Gravity Recovery and Climate Experiment (GRACE) have shown potential as an additional source of information on groundwater storage changes and used in combination with models to generate various outputs, such as drought indicators (Figure 9.4).

Figure 9.4 GRACE-based shallow groundwater drought indicator for the USA

![GRACE-based shallow groundwater drought indicator for the USA](https://nasagrace.unl.edu)

See, for example, the experiences of the MARVI project: www.marvi.org.in.
The primary scientific objective of GRACE is to measure variations in the Earth’s gravity field. These measurements can be used to derive total water storage change (ΔTWS) on Earth (Rodell et al., 2018). By subtracting from ΔTWS the change of volume of water stored in the other terrestrial components of the water cycle (namely soil moisture, rivers, lakes and reservoirs, ice and glaciers) for the same period, groundwater storage change (ΔGWS) can be estimated.

The main limitation of applying GRACE is the coarse resolution of satellite-derived data. Also, as ΔGWS is computed indirectly, it can include accumulated errors from the other water components considered, some of which are estimated by modelling.36 Despite these limitations, the approach has been used and combined with other data sources in order to improve the accuracy of groundwater storage change estimations. The ongoing Global Gravity-based Groundwater Product (G3P) project will provide a global, consistent and freely accessible data set on ΔGWS.

Although satellites do not give direct indications of groundwater quality, they can provide information on land use and geology, which can be related to groundwater quality and vulnerability to pollution. Moreover, remote sensing results can be used as additional variables to support predictive modelling. For instance, predictions of certain contaminants can be derived from information about anthropogenic activities, such as soil salinity problems arising from intensive irrigation (WWQA, 2021; UNEP, 2020). Also, information about land subsidence collected through remote sensing (e.g. using an interferometric synthetic-aperture radar – InSAR) can be linked to groundwater level change and groundwater mining.

Historical data about groundwater system variables (e.g. groundwater levels or salinity), acquired through monitoring, are used to identify trends and patterns in aquifer behaviour. This information is indispensable when attempting to forecast the change in groundwater quantity and quality in the future. This forecasting is often carried out through a scenario analysis using numerical models, where outcomes of various possible inputs or interventions in groundwater system are tested and analysed.

Both deterministic and stochastic (probabilistic) numerical models are used for a scenario analysis. A deterministic model is based on a hydrogeological conceptual model, being a simplification of a usually complex subsurface environment and simulating the flow and transport through that environment. A stochastic model looks primarily at the variables (input, state and output), developing various algorithms (through ‘machine learning’) to simulate the processes that connect them. Stochastic models are widely used in surface water hydrology because of data availability and the fast response times of the system. These advantages, along with the complexity of hydrogeological environments, are the two main reasons for using stochastic models in modelling of karst groundwater systems.

Deterministic numerical models, based on physical and chemical properties of the environment, are powerful tools to simulate and predict an aquifer’s state under various scenarios. Yet, it must be emphasized that models are a simplification of the real world, and that they come with a certain level of uncertainty, which depends on several factors, including the number and the complexity of physical and chemical processes simulated, the heterogeneity of the subsurface, the quality and quantity of input data, and the model’s calibration. This uncertainty can be significant, and should therefore always be assessed and communicated before using any model output. With the advances in computational capabilities and algorithms, it is possible (and highly recommended) to carry out uncertainty analyses, whereby the level of confidence of model predictions can be estimated.

A recent study by Shamsudduha and Taylor (2020) showed that the range of uncertainty of GRACE-derived estimates of ΔGWS for 37 aquifer systems varies from 36% to 219%.

For more information, see: www.g3p.eu.
Regardless of which models are used, a scenario analysis requires a good understanding of the anthropogenic and environmental driving forces impacting groundwater systems, and the ways in which they can evolve. Groundwater models nowadays are also used as a component in much more complex hydro-economic modelling frameworks, where scenario analyses encompass the outcomes of various models, addressing a diversity of topics and issues.

**Benefits of data and information are multiplied if they are shared among communities and organizations which are, or might be, involved in groundwater use, protection, development and management, or in their financing. Awareness of the state of groundwater is the first requirement for managing this resource efficiently and sustainably. The range of communities and organizations having an interest in groundwater is broad, and each of them has different information needs, at different scales, ranging from local aquifers to aquifer systems, and from river or lake basins to other geographical units such as countries, subregions or continents. Hence, there is a need for aggregation of groundwater information and knowledge at the regional, national and global scales in order to understand the role and impact of groundwater in the context of interlinked societal and environmental challenges. Climate change impacts (e.g. droughts, sea level rise), food production and trade, conflicts, and migrations are just some examples of processes and issues that require consistent groundwater policy at multiple levels. Accordingly, groundwater information needs to be adequately tailored for specific audiences. As illustrated in Figure 9.5, this can be in the form of scientific reports, information systems, social media postings, brochures and conference presentations, among others (Re and Misstear, 2018).

Figure 9.5
Selected forms of presenting groundwater data and information, in relation to envisaged users

While information-sharing has long been promoted (e.g. in Principle 10 of the Rio Declaration, 1992), the importance of data-sharing and open data has also been recognized (e.g. through the INSPIRE Directive in the EU, 2007). Nevertheless, the sharing of data and information is often deficient, especially in low-income countries. Data might be difficult to access and not freely available (SADC-GMI/IGRAC/IGS, 2019a). This is due to technical challenges...
Private companies should disclose relevant data and information concerning subsurface water-related parameters that would improve the assessment and management of groundwater. For example, geophysical and borehole data acquired during oil and gas exploration could improve knowledge of aquifer extent and parameters. Furthermore, mining companies are increasingly disclosing their water use (Northey et al., 2019). Large international beverage and bottled water producers risk negative publicity if they are associated with the depletion and/or pollution of aquifers in situations where no clarity exists about the state of the aquifer and related pressures, impacts and trends. This should motivate companies to assess their risks, to use groundwater in an evidence-based, sustainable manner, and ultimately to share their water-related data.

Moreover, if they want to grow sustainably, companies need to act beyond the site operations and help improve water governance aquifer-wide. This is recognized by some leading companies and is referred to as water stewardship. A CDP enquiry found that 64% of the reporting companies lowered or maintained their water withdrawals in a year-over-year comparison between 2019 and 2020. Yet, the participation of reporting companies is still low, and the monitoring of wastewater discharge is far from sufficient. A growing number of companies are incorporating water issues into their long-term business objectives, strategies and financial planning. Despite this, the examples of capital investments that have already been made to reduce use of potable water and risks of pollution are much less numerous. Regular monitoring and disclosure of groundwater use, thorough environmental risk assessments, and active water stewardship are the main parameters to distinguish between greenwashing and the responsible and ethical management of a company (IGRAC, 2016). The CEO Water Mandate is set up to address global water challenges through corporate water stewardship, in partnership with the United Nations, governments, civil society organizations and other stakeholders.40

Advocacy for open data is growing and online infrastructure is being developed to support the sharing of groundwater data and information. Also, the number of national and international portals with access to groundwater data and information is steadily growing. Some international examples are: the Southern African Development Community (SADC) Groundwater Information Portal, the Africa Groundwater Atlas and Literature Archive (developed by the British Geological Survey) and the Global Groundwater Information System (GGIS) developed by the International Groundwater Resources Assessment Centre (IGRAC – Figure 9.6).

The dissemination of scientific data about groundwater increasingly occurs in open-access publications, including journal papers, textbooks and manuals. A notable initiative is the so-called Groundwater Project,41 which is promoting free access to groundwater knowledge, through online books and other educational materials. It is important to share scientific knowledge with all, particularly in low-income countries where the price of books and subscriptions to scientific journals can be a barrier to accessing scientific information.

Given the increasing relevance of groundwater resources in the context of global change, groundwater specialists should not only add to the knowledge base, but also help in developing policies and participate in decision-making. However, their potential contribution is often not recognized (Gleeson et al., 2020b; Gorelick and Zheng, 2015). Organizations engaged in

40 For more information about the CEO Water Mandate, see: https://ceowatermandate.org.

41 For more information, see: gw-project.org.
In many low- and middle-income countries, hydrogeological capacity is missing, even when groundwater makes up the largest part of their managed water resources (Foster, 2020). This lack of capacity often comprises both human capacity as well as institutional capacity (Abdolvand et al., 2015; Albrecht et al., 2017). Weak institutional groundwater governance and management, in turn, undermine associated water security (United Nations, 2018). Well-founded capacity-building schemes are, therefore, an essential building block to move from a vicious circle of groundwater overexploitation and environmental degradation to a virtuous circle of creating local groundwater champions who eventually foster sustainable management practices and strengthen institutional capacity (Ortigara et al., 2018; Jadeja et al., 2018; Taylor et al., 2012b). Accordingly, Target 6a of the Sustainable Development Goals (SDGs) identifies international cooperation and capacity-building as key factors for achieving sustainable water resources management.

To ensure that capacity-building measures have an impact that lasts, respective activities should be target group-specific, provide interdisciplinary perspectives, allow for feedback from trainees and involve success verification mechanisms (Re and Misstear, 2018; Ferrero et al., 2019). Exemplary frameworks that foster institutional capacity-building include binational communal partnerships or governmental cooperation agreements involving relevant specialist agencies. This can also encompass the creation of national or regional centres of excellence in the recipient country. Achieving institutional success through hydrogeological capacity-building usually requires an enduring effort, which should be complemented with development programmes that allow for emerging local groundwater champions to bring their expertise to bear. At a smaller scale, the formation of human capacity can be reinforced by, for example, bilateral academic exchange programmes or postgraduate training opportunities.
Chapter 10

Groundwater policy and planning

UNDP
Jenny Grönwall* and Marianne Kjellén

With contributions from:
Gabriel Eckstein (Texas A&M University School of Law), Kerstin Danert** and Lesha Witmer (WfWP), Rebecca Welling (IUCN), Viviana Re (IAH), Katharina Davis (UNDP), and Lulu Zhang (UNU-FLORES)

* Commissioned through Water Governance Facility, hosted by SIWI

** Ask for Water GmbH on behalf of the Rural Water Supply Network
Groundwater policy defines objectives, ambitions and priorities for managing groundwater resources, for the benefit of society. Planning translates policy into programmes of action. Both are often part of a wider water resource policy and planning framework, but the specific challenges pertaining to groundwater have traditionally received less attention than surface water.

The terms ‘policy,’ ‘strategy’ and ‘plans’ are used interchangeably in many countries and contexts.

10.1 Groundwater policy

Policy seeks to represent values and ideas deemed to be in the public interest. Through broadly formulated statements, a policy document sets strategic objectives, establishes why they are important, and sets specific requirements to guide the course of action for present and future decisions (Torjman, 2005; De Sousa and Berrocal Capdevila, 2019). Figure 10.1 indicates how policy relates to specific requirements (What?); procedures, manuals and guidance (How?); and enabling tools (With what?), illustrating how to translate the policy into action (De Sousa and Berrocal Capdevila, 2019; Smith, 2003).

Figure 10.1
What is Policy? A model from the State of New South Wales (Australia)

Source: De Sousa and Berrocal Capdevila (2019).

In a national context, ‘policy-makers’ are normally a publicly elected or designated body with mandate to frame the policy and its scope. Federal states often have groundwater policies at the national and at the state level. The policy can be intended primarily for, and relate to the mandates of, authorities, organizations, jurisdictions and non-governmental organizations.

Developing policy requires making choices about the most appropriate means to a desired end. Economic principles (see Figure 13.1) can be used to guide choices, assigning value to groundwater resources (Smith et al., 2016). Instrumental, intrinsic and relational values and principles are also of essence to uphold environmental ethics, human needs, and cultural and historical values (see Figure 2.1 and United Nations, 2021).

The first step is to determine a national ‘groundwater management vision’ that is embedded within a national vision for water resources, in dialogue with actors ranging from local groundwater users and technicians to scientists, policy-makers and investors, for catalysing and managing the changes needed (Smith et al., 2016) – such as in South Africa (Republic of South Africa, 2010). Groundwater policy should be contingent on the legal status and nature of ownership of groundwater (public or private), of the water users, the interrelated surface...
water features, and land use in aquifer recharge areas (Foster and Chilton, 2018). It also should provide for integrated decision-making for groundwater resources and aquifer systems, and connect to other sectors and domains of society beyond the water sector – such as socio-economic development, gender equality and poverty alleviation, food and energy, ecosystems, climate change, and human health.

Figure 10.2 illustrates a generic institutional structure, showing how policy-making can enable vertical and horizontal integration and linkages to related sectors. The choices and the structure sit in a wider policy context where international guidelines and treaties can set outer frames. Recommendations of the Groundwater Governance Project (2016c), rules laid down in the European Union Groundwater Directive (European Parliament/Council, 2006), as well as the Model Provisions on Transboundary Groundwaters (UNECE, 2014) under the UNECE Convention on the Protection and Use of Transboundary Watercourses and International Lakes (UNECE, 1992) and the Draft Articles on the Law of Transboundary Aquifers (ILC, 2008; see Chapter 12) can also guide and influence policy-setting.
A (ground)water policy includes fundamental standards and basic guiding principles. Sustainability, efficiency, equity, the precautionary principle, the polluter pays principle, conjunctive management, demand and supply and maintenance management, and integrated water resource management (IWRM) are critical to inform future decisions (Smith et al., 2016). To ensure that indigenous communities’ interests are addressed, for instance when concessions are given to groundwater resource developers, the principle of free, prior and informed consent – a component of the United Nations Declaration on the Rights of Indigenous Peoples (UNGA, 2007) – is also essential. Procedural elements may call for participation, transparency, accountability, non-discrimination and universality, the rule of law, anti-corruption, and subsidiarity. The participatory approach emphasizes that women play a central part in the provision, management and safeguarding of water, as stressed in the Dublin Principles (ICWE, 1992). An updated set of principles for valuing water has been proposed by the High-Level Panel on Water (2018), and these principles have been further elaborated in the World Water Development Report 2021: Valuing Water (United Nations, 2021). Procedural principles are also fundamental for the human rights-based approach.

The General Comment No. 15 on the right to water recommends that priority in the allocation of water must be given to personal and domestic uses (CESCR, 2002). Drinking water is therefore prioritized over other sectors, for instance in South Africa (Republic of South Africa, 2010). Following policy-making, it may be useful to frame such policy in law, based on human rights terms, thereby elevating drinking water from ‘needs’ to ‘rights’ (Mechlem, 2016).

All too often, the adoption of a groundwater policy is primarily focused on the utilization of groundwater after abstraction. This is far removed from sound management of the aquifer, which requires attention to land use, replenishment, protection, and implementation of measures that aim at preserving the multiple groundwater system services and functions (see Chapter 1). The aquifers, acting as the ‘hosts’ of the groundwater, and the very sources of various (ground) waters are distinct but interconnected, and need to be managed by targeted, yet complementary measures that provide for conjunctive use (Eckstein, 2017; Puri and Villholt, 2021).

The Indian National Water Policy of 2012 states that groundwater “needs to be managed as a community resource held, by the state, under public trust doctrine to achieve food security, livelihood, and equitable and sustainable development for all.” (Ministry of Water Resources of India, 2012, p. 4). Regardless, the extraction of groundwater generally continues without strict regulation or enforcement (Pandit and Biswas, 2019), where powerful interests scarcely affected by the imposed government disincentives are reluctant to reduce their profitable groundwater use. Many states and union territories cover groundwater in their water policies; for instance, in Karnataka – a State that faces severe agrarian distress and acute shortage of domestic water – the over-exploitation of aquifers is now widely recognized, as is the interlinked groundwater–energy nexus (Kelkar Khambete, 2020). A stumbling block to realizing policy ambitions is the data bias in official statistics. Dry wells, for example, carry critical information about groundwater stress that is missed when data are filtered. This gap undermines policy interventions and resource allocation, as noted in the neighbouring State of Tamil Nadu (Hora et al., 2019).

In Australia, after decades of focusing primarily on surface water, the federal government as well as the States, territories and river basin authorities now pay more attention to groundwater. An example is the updated New South Wales (NSW) government’s 20-year strategy (NSW Government, 2021). This document shows a high degree of horizontal integration, with groundwater linked to all the sectors depending on, and impacting, the resource.
A groundwater (management) plan translates policy into a budgeted/financed programme of action and can provide a blueprint for its implementation.

Strategic planning identifies and defines actions that are likely to contribute to achieving the stipulated policy ambitions and goals, in particular for priority aquifer systems (Box 10.1). It can also serve to involve stakeholders in the process. Strategic plans are developed to promote rational, effective and fair water management and decision-making in relation to the resources and users of main concern. Planning considers uncertainty in a changing environment to address known future problems as well as those that cannot be predicted. This requires IWRM and linkages to all relevant policy sectors.

<table>
<thead>
<tr>
<th>Box 10.1 Action points for the process of planning priority aquifers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaborating and implementing groundwater management plans for priority aquifers is the ultimate test of adequacy for governance provisions, and involves the following stepwise sequence of actions in each adaptive management cycle:</td>
</tr>
<tr>
<td>• identification and characterization of groundwater management units;</td>
</tr>
<tr>
<td>• assessment of resource status, opportunities and risks;</td>
</tr>
<tr>
<td>• reaching consensus on required aquifer services and plan objectives;</td>
</tr>
<tr>
<td>• drawing up the management strategy (including specific measures, monitoring needs and associated finance); and</td>
</tr>
<tr>
<td>• planning implementation over a specified period, with systematic monitoring, review of effectiveness, and adjustment of the next cycle.</td>
</tr>
<tr>
<td>Source: Groundwater Governance Project (2016c, p. 86).</td>
</tr>
</tbody>
</table>

Operational management planning specifies the interventions and other activities to be carried out at field level, including their timing. It deals with subjects such as water supply infrastructure, reforestation projects and artificial aquifer recharge, as well as non-technical measures linked to legal and policy requirements, guidelines and related matters including who should be involved and at what phase. Operational plans go more into detail than strategic ones and usually cover only one policy sector, or only part of a sector, but acknowledge where they need to liaise.

In groundwater systems with little development stress, plans designed to monitor the aquifers for impacts without specific control mechanism would be appropriate. In contrast, in regions with intense usage competition or with historical or anticipated water shortages, plans detailing control measures would be important for preventing and managing risks of overexploitation (White et al., 2016).

Plans can be developed to specifically address issues such as flood risks caused by raised groundwater levels, typically following prolonged rain. Alternatively, the focus may be on avoiding depletion, seawater intrusion and land subsidence, and/or on protecting vulnerable groundwater-related ecosystems. Digitalization – including technologies for monitoring groundwater quality and aquifer systems in real time – offers efficiency gains and optimization through data collection and analysis, of importance at each stage of groundwater management planning (ITU, 2010). For instance, in arid regions, where a unified methodology for evaluation and decision-making is often restricted, a strategic approach for aquifer management planning may have to be based on a risk model (Şen et al., 2013).
Importantly, UN Member States are expected to realize the human rights to safe drinking water and sanitation through action plans or strategies, thereby actively promoting awareness and capacity concerning groundwater source protection, the need for treatment before consumption, and aquifer recharge (CESCR, 2002; Grönwall and Danert, 2020). Additional components include the specification of interventions and other management measures, and the expected impacts of such measures. All of these are central to ‘adaptive management’, which is needed to confront the joint challenges of global change and scientific uncertainty around complex groundwater resources and aquifers. Planning for conjunctive management of surface water and groundwater is critical to diversify water sourcing and to increase resilience (Grönwall and Oduro-Kwarteng, 2018). Additional aspects are shown in Figure 10.3.

Figure 10.3 Stages and factors in the elaboration of a groundwater management plan

Importantly, UN Member States are expected to realize the human rights to safe drinking water and sanitation through action plans or strategies, thereby actively promoting awareness and capacity concerning groundwater source protection, the need for treatment before consumption, and aquifer recharge (CESCR, 2002; Grönwall and Danert, 2020).

Plans can be prepared as a cooperative effort between national ministries, provincial and local agencies, and relevant stakeholders, based on dialogue and inclusive technical support (e.g. participatory mapping) to enable co-ownership of the process and the outcome. The process produces a formal document that can be validated, with time-bound actions and indicators that can be monitored, and outputs and impacts/outcomes that can be evaluated. The process includes a budget, linked to outputs that can be subject to review as performance is tracked and conditions change (Groundwater Governance Project, 2016c).

Open and participatory groundwater planning processes can generate greater public support and acceptance of the resulting plan and, by extension, operational management. Such planning involves scientists, resource management specialists, stakeholders and decision-makers, and...
should be accessible to non-specialists, inviting users to participate (Quevauviller et al., 2016). Planning of groundwater resources is as much a matter for government bodies as for the end users, collectively or individually. At the local scale, data gathering and information analysis will by necessity be limited; yet, all levels can benefit from capacity-building and awareness-raising. Likewise, sex-aggregated data, and ensuring the participation of women in data generation (a usually male-dominated topic), are vital in order to acquire a gendered dimension.

While a groundwater and aquifer management plan could be part of a national IWRM plan (GWP, 2017), basin-level planning needs to consider the systems as a whole. Indeed, surface water and shallow groundwater are usually closely interconnected. However, it needs to be observed that groundwater basin boundaries do not always coincide with those of surface drainage areas. Moreover, as not all aquifers are linked hydrologically to rivers or lakes, the upstream–downstream relationships and power dynamics that influence the use of surface waters and groundwater may be very different (Smith et al., 2016).

National goals and local development objectives, priorities, approaches and levels of activity that are area-specific give guidance to optimal development, use, management and protection of the groundwater resource and the connected environment and ecosystems (Groundwater Governance Project, 2016c). Policies, strategies and plans should be tailored to the local context, based on the priorities and aspirations of the local population, and informed by sound scientific evidence.

A plan should set goals for groundwater management and serve as a roadmap to guide implementation of policy and diagnostic resource assessments. The management plan should set out the actions needed to address specific problems or pressures on groundwater for specific contexts, for instance as shown in Table 10.1.

Table 10.1 Examples of actions that can be specified in groundwater management plans

<table>
<thead>
<tr>
<th>Types of measures</th>
<th>Purpose</th>
<th>Examples</th>
</tr>
</thead>
</table>
| Source-directed | Minimization and prevention of impacts at source; mitigation | • Authorization and licensing requirements; enforcement
• Quality standards for wastewater discharge; control of injection wells
• Requirements for on-site and landscape management approaches to control non-point, diffuse pollution
• Economic incentives to reduce pollution
• Development of low-waste and no-waste technologies
• Application of source-to-sea/catchment-to-coast/ridge-to-reef approaches to address flows of water, biota, sediment, pollution, materials and ecosystem services
• Mandatory and voluntary demand management to avoid over-abstraction |
| Resource-directed | Management of the resource; maintenance and operation | • National classification system for groundwater
• Assignment of groundwater management classes
• Setting quality objectives according to management classes
• Establishment of drinking water protection zones
• Application of adequate drinking water treatment methods
• Setting of a volume-based reserve to meet basic human needs and an ecological reserve to protect ecosystems
• Land subsidence control through pumping limits and managed aquifer recharge |
| Remediation | Restoration of groundwater quality and quantity, and/or aquifer storage | • Clean-up of abandoned sites
• Emergency response to spills
• Reduced abstraction to re-establish the reserve
• Managed aquifer recharge, rainwater harvesting and enhanced infiltration
• Development of a physically based model of land subsidence to plan for remedy strategies |

Source: Adapted from Smith et al. (2016, table 3.1, p. 53).
10.4 Examples of groundwater management planning

The European Union’s *Water Framework Directive* (European Parliament/Council, 2000) stipulates River Basin Management Plans as the main tool for presenting water status and analyses of impacts and responses, and for reporting to the European Commission. The Parties implementing the *Paris Agreement* under the UN Framework Convention on Climate Change highlight their climate actions in nationally determined contributions plans (NDCs). To date, groundwater features in 20 countries’ submitted plans and is mentioned in 8, out of a total of 75 Parties to the Agreement (UNFCCC, 2021). These plans include references to the need for investments in aquifer buffering to increase adaptation capacities, enhancement of groundwater recharge, protection and management of groundwater and wetlands, and risk mapping. The NDCs mention nature-based and technology-driven mitigation as well as adaptation-directed measures.

In Tonga, there is a risk of groundwater depletion given the urgent need for economic development, for instance through agricultural intensification (Kingdom of Tonga/World Bank Group/IFAD/UNDP, 2016). The island’s second NDC (Kingdom of Tonga, 2020) identifies salinization of groundwater as a potential impact of sea level rise, which threatens to reduce availability of freshwater resources. Means to address the situation include provisions of the Tonga Agriculture Sector Plan, which suggests assessing groundwater resources and their current exploitation, and identifying the potential areas for protection. The plan also suggests that, following previous drought years, there is an increased interest in using groundwater for irrigation.

In California (USA), the Sustainable Groundwater Management Act of 2014 tasks local agencies with regulating pumping in relation to aquifer recharge. These agencies have mandates to track and monitor abstraction and are required to map aquifer recharge areas. The Act requires planning of land use to achieve sustainability with transparency and stakeholder engagement, and learning within and between basins (Kiparsky et al., 2017).

China’s take on groundwater policy and planning shows how the two are sometimes indistinguishable. The 1988 Water Law (People’s Republic of China, 1988) lists planning in an independent chapter to emphasize its importance and legal status. It states that integrated water planning should be centred on watersheds rather than on administrative boundaries, with the regional planning complying with watershed planning, and based on a comprehensive scientific survey, investigation and assessment at relevant administrative levels. However, the stipulated segmentation in managing water quantity and quality inevitably hinders effective integration (Liu and Zheng, 2016). A Plan of Groundwater Pollution Control and Remediation, and a National Plan for Land Subsidence Prevention and Control provided official directives for groundwater management up to 2020 (Liao and Ming, 2019). These and other plans apply in parallel with the ‘Three Red Lines’ policy of 2012, which sets targets on total water use, efficiency improvement and water quality improvement. Further scientific planning should protect soils and groundwater to meet the 14th Five-Year Plan. Moreover, the Water Pollution Prevention and Control Action Plan (also known as the "Water Ten Plan") aims to control groundwater quality (Xinhua, 2020; China Water Risk, 2015).

Australia’s National Groundwater Strategic Framework followed on a National Groundwater Action Plan. In New South Wales, planning and resource allocation builds on Water Sharing Plans, and the Water Reform Action Plan outlines how the government will deliver on its goals (NSW Government, n.d.a, n.d.b). The state employs a Bulk Access Regime to determine how much water will be available for extraction by all licensed water users within a Water Sharing Plan (see also Box 2.3). For instance, the Great Artesian Basin Shallow Groundwater Sources Order 2020 establishes rules according to which water allocations are to be adjusted, recognizing *inter alia* the effect of climatic variability on the availability of water (NSW Government, 2020).

Lessons on participatory planning can also be drawn from Gujarat and Rajasthan (India). Here, researchers engaged villagers to create ownership and behavioural change around groundwater overdraft. End users learned to monitor rainwater, operate automatic weather stations and put data into a repository app. This enabled calculations of the water balance recharge and assessing how much irrigation could be allowed (Maheshwari et al., 2014).
Chapter 11

Groundwater management

UNESCO-IHP
Craig Simmons and Alice Aureli

IGRAC
Neno Kukuric

With contributions from:
Anita Milman (University of Massachusetts), Jane Dottridge (IAH), Bruce Misstear (Trinity College Dublin),
Angelos Findikakis and Alberto Guadagnini (IAHS), Emilio Custodio (Technical University of Catalonia),
Virginia Newton Lewis (WaterAid), Christophe Cudennec (IAHS), Enrique Fernandez Escalante (TRAGSA),
Kerstin Danert (Ask for water GmbH), Christina Copeland (CDP), Ziad Khayat (UNESCWA), Guy Fradin (IWRA),
Ghislain de Marsily (Sorbonne University and Paris School of Mines), Peter Dillon (CSIRO Land and Water,
Flinders University and National Centre for Groundwater Research and Training, Australia), and Catalin Stefan
(TU-Dresden)
Groundwater management encompasses the day-to-day operational decisions and practices that guide abstraction of groundwater, as well as other activities that have an influence on groundwater and the aquifers through which it flows. Management of groundwater may be undertaken to achieve the goals and objectives of policies set forth by laws and administrative procedures (see Chapter 10) or it may be undertaken by entities and individuals acting on their own accord. Knowledge of local groundwater systems and their conditions provides an important foundation for management, as it identifies what needs to be managed, what actions can be taken, and what the impacts of those actions can be.

As groundwater provides a range of provisioning, regulating, and supporting services (Bergkamp and Cross, 2007; Griebler and Avramov, 2015; see Figure 1.5), groundwater management is multidimensional. Groundwater management aims to control groundwater abstraction and quality as well as to address the effects of groundwater abstraction on ecosystems, surface waters, land subsidence and more. Groundwater management may also seek to allocate water in a manner that aligns with priorities and objectives stipulated in groundwater policies. Crucial to the success of any management effort is the need to examine the potential externalities and multiple effects of any management action, to avoid unintended or unexpected consequences.

This chapter provides an overview of groundwater management. Topics discussed include: gathering data and knowledge for groundwater management, controlling groundwater abstraction, protecting groundwater quality, and managing groundwater for broader sustainability and needs. Integrated groundwater management practices, including managed aquifer recharge (MAR), are also described.

Chapter 9 describes tools and approaches for building the knowledge base for groundwater and keeping it up to date. For groundwater management, a hydrogeological conceptual model – describing structural features, boundary conditions and hydraulic properties of the groundwater system – is needed to estimate groundwater availability and to understand and characterize the main physical processes that are taking place within the system. Since aquifers are dynamic systems subject to change, groundwater abstraction, water levels and water quality need to be regularly monitored to provide information on the state of the groundwater system and trends over time. Hydrogeological conceptual models, the water budget (i.e. recharge, discharge, and their difference) and monitoring data provide the basic ingredients for groundwater models. Groundwater modelling can contribute to a better understanding of flows throughout the groundwater system and can be used for predicting the future state of the system (both with and without management interventions).

Perhaps one of the most critical components of groundwater management is control of the location and quantity of water withdrawals from the aquifer. Proper siting and construction of wells and boreholes (also known as drilled wells or tubewells) are fundamental for managing the hydrogeological impacts of withdrawals, both on the aquifer itself and on other environmentally significant assets such as rivers, lakes, wetlands, springs and groundwater-dependent ecosystems. Careful siting of wells is also important to prevent or minimize potential interactions between wells. Control over the quantity of water withdrawn is important because intensive groundwater pumping continuing for extended periods of time may lead to groundwater depletion.

A variety of tools can be used to manage groundwater withdrawals (Table 11.1). Which tools are used depends on the approach to management defined by the governance and policy regimes in place. Not all management occurs through government. Communities and/or groundwater users themselves may independently choose to manage well siting and groundwater abstractions and in doing so, employ similar tools to those used by the government.
Deployment of different types of management tools can simultaneously influence the location, timing, and quantity of groundwater abstractions.

The adoption of good practices in well siting and construction is often the first management action undertaken. Siting of wells must also take account of socio-economic and cultural factors. For example, in the case of rural water wells in Africa and Asia, where women are normally responsible for water collection, well siting needs to account, apart from the impacts on the aquifer, for walking distance and personal security at the well site (Misstear et al., 2017).

Proper construction, maintenance and testing of wells are necessary to ensure sustained access to groundwater as well as cost-effectiveness and safety. Declines in handpump functionality and borehole failure due to poor-quality pumps are common problems affecting many wells, especially in parts of Africa (Andres et al., 2018; Tincani et al., 2015).

Deployment of several groundwater management tools is contingent upon first having the legal and institutional structures in place that grant authority for their use and enforcement. Implementation of any new regime to control groundwater pumping and use is not without challenges. In many regions of the world, laws and institutions governing groundwater are in their infancy and not fully operational. With respect to regulatory approaches, there is no single method for determining volumetric allocations, and any method applied will have its strengths and drawbacks. In different locations, governments have defined water rights based on historical pumping rates, current uses, land area, or other methods. Often, governments seek to limit withdrawals to an estimated 'safe' or 'sustainable' yield, though those concepts are ambiguously defined. The interaction between ground and surface waters makes it difficult to define and assign environmentally acceptable flows to rivers when establishing groundwater abstraction permits.

Table 11.1
Methods for controlling groundwater withdrawals

<table>
<thead>
<tr>
<th>Approach to management</th>
<th>Management tools</th>
</tr>
</thead>
</table>
| **Regulatory**: control well development and withdrawal by specifying the conditions under which groundwater may be abstracted | • Requirements for construction, drilling, and/or spacing of wells and boreholes
• Assignment and enforcement of water use entitlements (rights, concessions, licenses, or permits for withdrawal) that specify a volumetric allocation and timing of withdrawals
• Curtailment of pumping during drought or based on climatic or streamflow conditions
• Quotas or restrictions on energy use for groundwater withdrawal |
| **Market-based**: encourage or discourage groundwater withdrawal and related activities by changing the cost of those actions | • Tariffs/fees applied directly to groundwater abstractions or to proxies, such as electricity or land use
• Subsidies (grants, loans, access to goods or services at discounted cost, and technical assistance) that reward water savings or facilitate adoption of new technologies and practices |
| **Informational**: influence groundwater withdrawal and related activities through education, dissemination of information, and guidance | • Dissemination of information, guidance, or data designed to change behaviour
• Awareness-raising campaigns and social marketing
• Development of standards or certifications
• Provision of technical support |
| **Informal**: influence groundwater withdrawal and related activities through cultural norms and situated knowledge | • Social pressures, monitoring and sanctioning
• Actions by groundwater users to adapt the timing and quantity of their pumping to changing aquifer conditions |

Perhaps one of the most critical components of groundwater management is control of the location and quantity of water withdrawals from the aquifer.
Further, groundwater users may resist the imposition of new efforts to control groundwater pumping. Where groundwater has historically been subject to minimal or no regulation, groundwater users may view management actions as expropriation of private property. Allowing for exempt uses, such as for domestic use or livestock, or a fixed amount of inframarginal pumping (i.e. an allowable and usually small volume of water that can be pumped without being subject to regulations or tariffs, usually for the purposes of meeting basic human needs or household-scale farming), can help overcome resistance to control through regulation and pricing. However, care needs to be taken to ensure that exempt uses do not undermine management objectives (Jakeman et al., 2016; Molle and Closas, 2020). Equity is an important consideration, as management actions that differentially affect groundwater pumpers and users can lead to conflict. Implementation is usually more effective when a combination of ‘carrots and sticks’ are used to change users’ behaviour (Molle and Closas, 2020).

For any approach to controlling groundwater withdrawal to be successful, it is important to monitor groundwater extraction rates and aquifer conditions, and to ensure compliance with permits and regulatory requirements. Monitoring also serves to support policy-makers in justifying constraints on abstractions (Moench, 2004). Unfortunately, due to the hidden nature of groundwater, the quantity of groundwater abstracted often remains undetermined. Groundwater users themselves may be unaware of the quantity they are withdrawing, or when they do know, they may even have reasons to keep that information confidential. Metering provides valuable information, yet installation and reading of meters is not without cost and may be perceived by well owners as an infringement of their privacy. Consequently, most wells around the world are unmetered (Kemper, 2007). New and lower-cost technologies for groundwater metering are being developed. Further, pumping quantities can be estimated indirectly through remote sensing, irrigated land acreage and electricity use, among other means (Giordano, 2009; Ursitti et al., 2018). Nonetheless, in many places, social and political resistance to monitoring and data disclosure may impede tracking and enforcement of compliance with groundwater abstraction regulations.

Box 11.1 presents a case study of well permitting and augmentation to reduce groundwater withdrawal impacts.

Box 11.1 Groundwater withdrawal and quantity management: Well permitting and augmentation to reduce impacts (South Platte River basin, Colorado, USA)

Groundwater levels and surface water flows in the South Platte River basin, Colorado (USA) declined dramatically during the mid and late 20th century due to the expansion of groundwater pumping. These effects created tensions between surface water and groundwater users and threatened the habitat of several endangered species located downstream in the river. To address this issue, the State of Colorado requires all entities who began pumping water after 1997, including any new users, to obtain approval from the State’s Water Court. To do so, prospective pumpers must demonstrate that groundwater withdrawals will not negatively affect other uses and users or, if it will, pumpers must conduct what the State terms ‘well augmentation’. Well augmentation involves offsetting or eliminating any potential impacts of groundwater withdrawals on streamflow, typically through recharge or substitution. Well augmentation plans must include an assessment of potential stream depletion and a plan to avoid it, taking into consideration the lag time between pumping, well augmentation and river flows. In this manner, the State manages groundwater withdrawals to ensure they do not infringe upon existing surface water and groundwater rights, while also protecting in-stream flows.

See Milman et al. (2021) and Blomquist et al. (2010) for further information.
As described in prior chapters, groundwater quality faces many threats from agricultural intensification, urbanization, industry, mining, population growth and climate change, as well as from naturally occurring contaminants such as arsenic and fluoride (Figure 11.1). Groundwater should be managed to prevent these threats and concerns from reaching problematic levels, to avoid the increase of the pollution and to reverse pollution trends, and to reduce the impacts of water quality degradation on human health and the environment.

11.4 Protecting groundwater quality

The most sustainable and cost-effective approach to managing groundwater quality is to ensure adequate protection of groundwater, thus avoiding contamination by human activities. While groundwater remediation can be effective in reducing concentrations of contaminants, it is costly. Groundwater protection can be achieved through: (i) a pollution source-directed approach that prevents and minimizes the impact of development on groundwater quality, and (ii) a groundwater resource-directed approach that implements measures to protect the aquifer and ensure sustainability and suitability for beneficial use. With respect to naturally occurring contaminants, measures such as restricted withdrawal, limited drawdown to avoid ingress of water with a different quality, and operational requirements (e.g. constraints on the timing and rate of pumping to minimize the risk of water quality deterioration) can be defined and implemented.

Sources of pollution can be controlled through standards, monitoring protocols, on-site management practices, and permits that specify requirements for waste discharge and potentially contaminating activities. These management tools generally dictate what chemicals or constituents can be used, and when, where and how. They also specify what technologies and procedures should be followed to avoid or reduce contamination and the risk of accidents or spills. Monitoring, enforcement and sanctioning through fines for non-compliance will improve the effectiveness of those activities.

Protection of the aquifer can be achieved through vulnerability mapping, development of groundwater protection zones to safeguard drinking water (Box 11.2) and land use planning that considers groundwater quality protection. Best management practices, incentive and disincentive programmes for aquifer protection, and educational and awareness campaigns can also contribute to aquifer protection.

Poor well construction often means that the wells themselves provide the main pathway for pollutants to enter the aquifer (or move between aquifers). To help preserve groundwater quality, wells should be constructed with proper sanitary seals and protective headworks.
Management of groundwater quality requires monitoring through regular collection and analysis of water samples over prolonged time periods. Institutional, technical and resource capacity is needed for collecting high-quality data with sufficient frequency and for evaluating trends in water quality to identify risks and determine the effect of management activities.

Diffuse pollution and the distributed nature of potential sources of contaminants present very real challenges to controlling groundwater quality. This is because there are many pathways through which contaminants can reach the aquifer and enforcement of all pathways is impossible. Contamination of an aquifer system is often detected only a considerable time after it occurred. Indeed, in many places around the world, the sources of pollution no longer exist, yet the contamination plumes are still present or just emerging (e.g. nitrates, dense non-aqueous phase liquids (DNAPLS), etc.).

Preventing pollution and protecting an aquifer frequently require coordination across many agencies and actors. In many countries, separate agencies govern land use, water resources, discharge of waste and the use of hazardous substances. Coordination, communication and regulatory harmonization among the relevant agencies, actors and policy frameworks are among the many challenges that must be overcome to protect groundwater quality effectively and efficiently.

Box 11.2 Groundwater source protection areas

Groundwater source protection areas are employed to prevent pollution of drinking water sources and groundwater used for agricultural purposes. This approach typically establishes a minimum distance between waste disposal areas or other identified pollutant sites, and protected groundwater supply areas. Risk, vulnerability, and important hydrogeological and hydrogeochemical characteristics inform the design of protection zones. There are many examples of this management approach globally, including in Australia, Canada, Europe, India and the USA.

Schematic representation of protection areas around a water source

Source: Based on Nel et al. (2009) and Rajkumar and Xu (2011).
Groundwater systems do not exist in isolation: they are tightly interconnected with surface water, land, climate and ecosystems. These linkages, as well as their connections with society, culture and the economy must be understood to manage groundwater effectively. In many countries, groundwater and surface water are managed independently. Further, policies and activities from outside the water sector (particularly those related to land, food and agriculture, mining, and the energy sector) affect demands for surface water and groundwater, impact infiltration and recharge, and may create sources of contamination.

Particular attention to the conjunctive management of surface water and groundwater resources and to the potential for ‘nature-based’ solutions is needed (Van der Gun, 2020). Understanding interactions between surface water and groundwater, by quantifying exchange fluxes, directions and water quality interactions, is vital for ensuring that management achieves its intended outcomes. Land and ecosystem management, coordinated with groundwater management, can enhance storage and retention, protect water quality or conversely, adversely affect groundwater systems. Consequently, policy coherence and consideration of the full range of users, uses and impacts is essential.

Due to the evolving nature of groundwater management, multiple institutions, policies, and management tools exist concurrently. This may lead to inefficiencies and contradictions. Groundwater management planning (see Chapter 10) provides a mechanism for coordinating across the many actors involved in groundwater management, and for integrating and synergizing across the multiple policies and tools used (Foster et al., 2015; Gage and Milman, 2020).

Integration with environmental management, with land use management, and with management of space and resources of the subsurface are all important issues within the purview of integrated management. MAR is one example of an integrated approach (see Box 7.1).

MAR, also called artificial recharge, entails the use of engineered or natural infrastructure to increase infiltration into an aquifer system (Dillon et al., 2019). Technologies such as MAR are important for securing water resources against drought and saltwater intrusion, as well as for increasing water supply, improving water quality, maintaining the structure and quality of the aquifer, and sustaining groundwater-dependent ecosystems. MAR allows for replenishment of aquifers to complement storage dams and provides a cost-effective alternative that minimizes evaporation and environmental impacts. MAR can also be used to retain unharvested urban stormwater (Box 11.3) and recycled water for productive use when needed. At the watershed scale, MAR can be used to maintain environmental water flows and availability, creating lags in water discharges to a stream (Page et al., 2018).

Artificial recharge consists of two main components: (i) intercepting water (usually surface water), and (ii) mechanisms to enable infiltration of this intercepted water so that it enters the aquifer. Any particular form of artificial recharge combines both components; technical provisions sometimes are focused on the first component (e.g. recharge dams, water intakes from a river), and in other cases on the second one (e.g. spreading techniques with ponds or basins, injection wells); and occasionally a mix of the two (e.g. channel spreading, induced bank infiltration). Proper design of the MAR system and adequate operation and maintenance can improve the qualitative and quantitative performance of the system.

Best practice examples of MAR applications are widely available. The MAR Portal, accessible via the International Groundwater Resources Assessment Centre’s Global Groundwater Information System, contains detailed information on some 1,200 MAR sites from about 50 countries around the world, as well as regional MAR suitability maps. Dillon et al. (2019) present an overview of the spread of MAR techniques around the world during the past 60 years.

42 For more information, see ggis.un-igrac.org/view/marportal.
Groundwater management presents many challenges and opportunities. For groundwater to be effectively managed, the links between groundwater, society (including population growth), environment and ecosystems, and climate change must be taken into consideration. Policies and activities from outside of the water sector influence demands for groundwater as well as infiltration and recharge, and may also create sources of contamination. Groundwater management also has implications for society, the environment and the economy.

Historically, groundwater has usually not received management attention until after a problem has magnified to the extent that it becomes visible. Management has thus been reactive. Proactive approaches to managing groundwater are required to prevent degradation and depletion of the resource.

Management of groundwater must concurrently take into consideration the multiple dimensions of groundwater systems: groundwater storage, flows, quality and behaviour, and the structure and properties of the aquifer itself.

Management of groundwater must occur at all levels. While governments and their mandated agencies may take the lead in the overall coordination regarding groundwater management, there may also be important roles to be played by communities, water companies, industries, farmers and other individuals.

Limited data and knowledge remain key impediments to evidence-based groundwater management. Monitoring, assessments and investigations are critical (see Chapter 9).

Capacity and capability (both people and knowledge) are required for effective and successful groundwater management. Educating the young and ensuring that their voices are heard are vital for the future success of groundwater management globally. Well-resourced groundwater science and education programmes are needed to train managers, and governance and policy must create the enabling environment for management. Developing and sustaining groundwater management requires substantial financial and political support from governments, and adequate mandates for the agencies that will play the lead role.

Box 11.3 Stormwater harvesting for aquifer storage and recovery: Example of a MAR project, Adelaide area (Australia)

In Adelaide (Australia), stormwater runoff is collected in small, constructed wetlands that have a retaining and treatment functionality, providing for biodiversity and forming a recreational destination. During several days of retention in the wetlands, pollutants and pathogens are removed. Then, the water is injected in the deep Tertiary aquifer by means of Aquifer Storage and Recovery (ASR) wells. Stormwater harvested via aquifer storage and recovery represents about 10% of Adelaide’s water supply. By 2017, 58 MAR schemes were in operation, with a combined recharge capacity of more than 20 million m³/year.

MAR schemes have low costs and high public acceptance.
Chapter 12

Transboundary aquifers

UNESCO-IHP
Raya Marina Stephan, Alice Aureli and Aurélien Dumont

UNCECE
Annukka Lipponen∗ and Sarah Tiefenauer-Linardon

With contributions from:
Christina Fraser (IGRAC), Alfonso Rivera and Shammy Puri (IAH), Stefano Burchi (AIDA),
Gabriel Eckstein (Texas A&M University School of Law), Christian Brethaut (University of Geneva),
Ziad Khayat (UNESCWA), Karen Villholth (IWMI), Lesha Witmer (WfWP), Renee Martin-Nagle
(Environmental Law Institute), Anita Milman (University of Massachusetts), Francesco Sindico
(University of Strathclyde), and James Dalton (IUCN)

∗ with the Finnish Ministry of Agriculture and Forestry at the time of publishing
This chapter gives an overview of the status of transboundary aquifers and the cooperation related to shared groundwater resources, highlighting the complexity of the assessment, analysis and management of these systems. It summarizes the main challenges regarding transboundary aquifers and the need for more comprehensive and integrated management, which would include technical, legal and organizational aspects as well as training and cooperation.

When an aquifer or aquifer system is referred to as ‘transboundary’, that means that parts of it are situated in different states (UNGA, 2009). Transboundary aquifers include a natural subsurface path of groundwater flow, crossing an international boundary, such that water can flow from one side of the boundary to the other (UNESCO, 2001). The first global inventory of transboundary aquifer was undertaken by UNESCO-IHP, which launched the Internationally Shared Aquifers Resources Management initiative (ISARM) in 2000 (Box 12.1). The currently known global distribution of transboundary aquifers is shown in Figure 12.1, based on an inventory of global and regional projects and initiatives. The first global baseline assessment of 300 of the world’s largest transboundary aquifers was undertaken by the Transboundary Waters Assessment Programme (UNESCO-IHP/UNEP, 2016). This programme described transboundary aquifers in terms of human dependence on the resource. It elaborated scenarios based on population pressures and identified future hotspots in Sub-Saharan Africa, part of Eastern Asia and Central America. The exact delineation of a large number of transboundary aquifers is still incomplete, particularly at the local level where transboundary aquifers may be small but vital for communities’ livelihoods (Eckstein, 2013; Fraser et al., 2020).

Figure 12.1 Transboundary aquifers of the world

43 Including the First and Second UNECE assessment of transboundary aquifers located in South-Eastern Europe, Caucasus and Central Asia (UNECE, 2007, 2011); Inventory of Shared Water Resources in Western Asia (UNESCWA/BGR, 2013).
Generally, drivers of stress are the same for domestic and transboundary aquifers. Political boundaries add specific challenges. Actions on the aquifer in one country can have a significant impact on the other side of the border. Figure 12.2 illustrates a simple example of the effects that abstracting groundwater from a transboundary aquifer can have across borders. Heavy abstraction on one side of the border can cause the lowering of the water table in a neighbouring country. It can even at times cause groundwater flows to reverse across the border. Groundwater abstraction can also impact systems that are hydraulically connected to the transboundary aquifer, for instance by reducing river flows or affecting groundwater-dependent ecosystems. In addition, contamination of the aquifer on one side of the border can flow across political boundaries, causing potentially severe impacts for neighbouring states and complicating any remediation efforts.

Box 12.1 International Shared Aquifer Resource Management Initiative

In 2000, UNESCO's Intergovernmental Hydrological Programme launched the Internationally Shared Aquifer Resource Management initiative (ISARM) (Resolution XIV-12 – UNESCO-IHP, 2000), aimed at preparing a global inventory of transboundary aquifers and developing and supporting cooperation between countries through the improvement of knowledge of transboundary aquifers (TBAs). The initiative carried out regional studies designed to delineate the aquifers, as well as to assess and analyse hydrogeological, legal, socio-economical, institutional and environmental aspects. The regional inventories revealed that some of the most important aquifers in Africa and in Latin America are transboundary (UNESCO-IHP, 2009).

The initiative contributed towards building the knowledge base and provided guidance for countries’ cooperation on TBAs. Substantial advancement has also been achieved with regards to the legal component. UNESCO-IHP assisted the International Law Commission (ILC) in the preparation of a set of 19 draft articles on the Law of Transboundary Aquifers that are annexed and mentioned in several resolutions of the General Assembly of the United Nations (UNGA).

As a result of ISARM’s activities, projects have been initiated in different regions to help countries in establishing cooperative mechanisms for the management of TBAs.
The extent of transboundary aquifers can vary greatly, from a few to over a million square kilometres, and from tens to several thousands of metres in depth. This raises the question whether joint management and monitoring should necessarily encompass the total extent of a transboundary aquifer, or rather concentrate on specific hotspot areas where transboundary impacts may be most likely to occur. One possible approach to this dilemma is found in the agreement on the Saq-Disi aquifer (shared between Jordan and Saudi Arabia), which considers the establishment of protection areas around the border.

Cooperative management of transboundary aquifers can be complex due to obstacles in aquifer-sharing countries, which may include (AFD, 2011):

- lack of perception of the transboundary character among the authorities, managers and concerned populations;
- absence of a specific legal and institutional framework;
- different management and governance approaches and priorities;
- lack of political will for cooperation and implementation of long-term management;
- tensions between countries, unequal resource partitioning, groundwater quantity and quality decline, and different management capacities within the social, economic and environmental contexts of aquifer-sharing countries;
- fragmented knowledge of the aquifers;
- precise data not being shared (see Table 12.1 below);
- insufficient financing;
- lack of knowledge and capacity for developing and executing scientific/technical studies, and for setting up formal institutions; and
- different languages spoken, or different cultural or political orientations, on both sides of the border.

Furthermore, the integration of gender considerations into transboundary cooperation represents an element for creating opportunities of more socially equitable management of transboundary groundwater resources.

Training and capacity-building programmes are key for empowering technical and administrative staff to understand the different challenges involved in the assessment and management of transboundary aquifers (Nijsten et al., 2016).

Sharing data represents the first step in cooperation between neighbouring countries, as it is essential to reaching an agreement about a reliable conceptual model of the aquifer, which is in turn a prerequisite for the formulation of management plans.

When data are lacking, or states are unwilling to share them, this can hamper the sustainable management of transboundary groundwater systems. Transboundary aquifer management often suffers from a lack of institutional will and insufficient resources to collect the necessary information (AFD, 2011). Although global data can enlighten general trends, a more detailed understanding at the regional and local level is required for joint decision-making and transboundary aquifer management (IGRAC/UNESCO-IHP, 2015; Fraser et al., 2018; Rivera, 2015, 2020).

Data management and data sharing within transboundary aquifers can be supported by both information management systems and web-based platforms that assist in data collection, storage, processing, visualization and sharing (IGRAC/UNESCO-IHP, 2015),
such as the Global Groundwater Information System (GGIS) (IGRAC, n.d.). Advances in technologies, from space-based observations to telemetry, combined with citizen science, may facilitate the heavy burden and cost of data collection (see Chapter 9).

The data and information requirements suggested in Table 12.1 apply both to domestic and transboundary aquifers, except for the legal and institutional components. Data that have been collected and analysed at the national level, using different methods and approaches, may need to be harmonized before they can be used across borders.

A vital component of transboundary aquifer management is monitoring, which should include time series observation of groundwater levels and quality (IGRAC/UNESCO-IHP, 2015). For monitoring to be effective, data should be coordinated, harmonized and shared among aquifer states (SADC-GMI/IGRAC/IGS, 2019b). In view of the complexities in transboundary aquifer assessment and monitoring, guidelines have been developed to assist aquifer states and stakeholders in the process (e.g. the UNECE Task Force on Monitoring and Assessment, 2000; AFD, 2011; IGRAC/UNESCO-IHP, 2015).

International water law was initially developed for surface waters. Considerations on groundwater started progressively with the growing awareness of the importance of transboundary aquifers. The Convention on the protection and use of transboundary watercourses and international lakes44 (Water Convention – UNECE, 1992) covers any surface or groundwater bodies that mark, cross or are located on boundaries between two or more states. It has provided the basis for various bilateral and multilateral agreements (UNECE, 2013). The Convention on the law of non-navigational uses of international watercourses (United Nations, 1997)45 considers transboundary groundwater only when it is connected to an international surface water system and flows to the same terminus. It does not consider the specific characteristics of the diverse types of aquifers.

To fill this gap, the International Law Commission (ILC) prepared an international law instrument composed of 19 draft articles that contemplate all types of aquifer characteristics (Stephan, 2011). The articles are the topic of five non-binding UN General Assembly (UNGA) resolutions.46

The UNGA commends the draft articles to the attention of governments, “as guidance for bilateral or regional agreements and arrangements for the proper management of transboundary aquifers” (UNGA, 2013, 2016, 2019). All types of transboundary aquifers, including non-rechargeable aquifers, are covered in the scope of these draft articles. They also consider land use, as they apply to “other activities that have or are likely to have an impact” (art. 1§b). The draft articles have adapted the core principles of international water law to the aquifers’ characteristics. They include considerations related to non-rechargeable aquifers, groundwater management and monitoring, and the protection of ecosystems and the aquifer recharge and discharge zones. In 2012, the Meeting of the Parties to the Water Convention adopted the Model Provisions on Transboundary Groundwaters (UNECE, 2014), which build upon the draft articles, aiming to provide guidance for the implementation of the principles of the Convention to transboundary groundwater, and to improve cooperation on integrated management of transboundary surface water and groundwater bodies.

44 In force since 1996, 44 Parties.
45 In force since 2014, 37 Parties.
Transboundary relations can involve different degrees of cooperation. There are very few cases worldwide of interstate agreements regarding transboundary aquifers in force (Burchi, 2018b): the Genevese aquifer (France, Switzerland), the North Western Sahara Aquifer System (Algeria, Libya, Tunisia), the Nubian Sandstone Aquifer System (Chad, Egypt, Libya, Sudan), the Guarani Aquifer (Argentina, Brazil, Paraguay, Uruguay), the Saq-Disi Aquifer (Jordan, Saudi Arabia), and the Calcaires Carbonifères (Belgium, France).

Frequently, transboundary aquifers are part of a broader water cooperation agreement developed for transboundary river basins. Such broader agreements may apply to transboundary groundwater to different degrees. They do not necessarily consider the aquifer in its complete extension, as the areal extents of surface water basins often do not align with the underlying groundwater systems.

Scientific cooperation initiatives exist around the world in the framework of technical projects on transboundary aquifers. Such initiatives can have various scopes, some of them aiming at joint scientific assessment, while some others tackle the management of specific issues. In these cases, the role of regional and international organizations and donors can be critical, particularly when the countries concerned are not on a par as regards to capacity, knowledge, information and confidence. The study of the Dinaric Karst Aquifer, one of the world’s largest karst aquifer systems, is an example of collaborative efforts between countries. The project facilitated the establishment of technical cooperation that resulted in political commitments to adopt management measures (Box. 12.2).

Table 12.1

<table>
<thead>
<tr>
<th>Hydrogeology, physiography and climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquifer geometry (boundary, type, depth of water table, aquifer thickness)</td>
</tr>
<tr>
<td>Aquifer recharge and discharge identification</td>
</tr>
<tr>
<td>Lithology and soil type</td>
</tr>
<tr>
<td>Porosity, permeability</td>
</tr>
<tr>
<td>Transmissivity and vertical conductivity</td>
</tr>
<tr>
<td>Groundwater levels and flow direction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater quality</td>
</tr>
<tr>
<td>Pollution sources</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Socio-Economic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
<tr>
<td>Refugee/Internally displaced people (IDP) camps</td>
</tr>
<tr>
<td>Groundwater use</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Legal and institutional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transboundary legal framework</td>
</tr>
<tr>
<td>Transboundary institutional framework</td>
</tr>
<tr>
<td>Ownership of groundwater</td>
</tr>
<tr>
<td>Groundwater abstraction control</td>
</tr>
<tr>
<td>Enforcement of legislation</td>
</tr>
</tbody>
</table>

Sources: Based on Rivera (2015, 2020) and IGRAC/UNESCO-IHP (2015).
Until now, experiences in setting up and operationalizing a fully empowered and functional institution charged with the governance of a transboundary aquifer system have remained limited. Recent progress has been made in establishing consultation mechanisms within existing institutions, such as for the Stampriet Aquifer (Box 12.3) shared by Botswana, Namibia and South Africa. Experience suggests that formal institutional arrangements favourable for transboundary cooperation can be achieved when neighbouring countries first build trust through the joint identification of needs and interests, and by carrying out multidisciplinary assessments of the aquifer they share.

Box 12.2 Protection and use of the Dinaric Karst Transboundary Aquifer System (DIKTAS)

Some of the countries sharing the Dinaric Karst Transboundary Aquifer System (Albania, Bosnia and Herzegovina, Croatia, and Montenegro) initiated in 2010 a collaborative effort to facilitate its equitable and sustainable management of the aquifer system, and to protect the unique ecosystems that depend on it. The project improved the knowledge of karst aquifers in the area and the coordination among countries, agencies and other stakeholders. Being the first major project globally to address transboundary karst aquifers, it has been used as an opportunity for introducing new, integrated management principles in shared karst aquifers of such magnitude. The project identified regional management actions, such as measures regarding policy and legislation, monitoring and data management, training and awareness-raising, as well as necessary investments.

Further information on the DIKTAS project can be found here: http://diktas.iwlearn.org/

Box 12.3 The Stampriet Multi-Country Cooperation Mechanism: The first transboundary aquifer cooperative mechanism nested in a River Basin Organization

The Stampriet Transboundary Aquifer System (STAS) lies entirely within the Orange-Senqu River basin, in an area shared by Botswana, Namibia and South Africa. In 2017, the countries sharing the STAS agreed to establish a Multi-Country Cooperation Mechanism, nested in the structure of the Orange-Senqu River Commission (ORASECOM), that considers surface water and groundwater conjunctive management. The mechanism set the baseline for institutionalizing the cooperation for the joint governance and management of the aquifer. The Stampriet aquifer is the first example of the establishment of a transboundary aquifer coordination mechanism in the southern Africa region.

Through its inclusion of Sustainable Development Goal (SDG) Target 6.5, the 2030 Agenda for Sustainable Development has raised awareness of the need to "implement integrated water resources management [IWRM] at all levels, including through transboundary cooperation as appropriate". The SDG Indicator 6.5.2 monitors progress towards SDG Target 6.5 by assessing the proportion of transboundary basin area (rivers, lakes and aquifers) covered by an operational arrangement for water cooperation. The indicator allows for an assessment of whether transboundary aquifers are covered by their own specific arrangements or are covered within river and/or lake basin arrangements or broader bilateral arrangements.

A lack of groundwater knowledge has proven to be a key limitation in the calculation of the overall value of SDG Indicator 6.5.2. Thirty-five of the countries that reported in 2020 could not produce an indicator value for their aquifers, and a lack of groundwater data may have deterred others from submitting national reports. In turn, the efforts of countries to gather basic aquifer information and data (e.g. transboundary aquifer delineation) can be an important first step towards awareness and progressing cooperation on transboundary aquifers. The number of
countries that provided information about aquifers-related cooperative arrangements in their report has increased in 2020 as compared to 2017 (Table 12.2). By preparing the national reports through a consultative process, at the national level or with neighbours, countries were able to establish new cooperation programmes such as the one regarding the Senegalo-Mauritanian aquifer (Box 12.4).

12.6 Benefits of transboundary cooperation

Transboundary aquifer cooperation has the potential to generate significant benefits. For example, in the case of the North-Western Sahara Aquifer System, countries sharing the aquifer pursue benefits that include social, economic and environmental aspects (UNECE, 2015). An example could be the resilience of local communities, which is increased through enhanced capacity and mutual learning to resolve common challenges related to natural resources scarcity and security, food safety and climate change; as well as preservation of sensitive wetland ecosystems (NWSAS Consultation Mechanism, 2020).

The sharing of benefits provided by the use of groundwater represents an important facet of hydro-diplomacy (Grech-Madin et al., 2018), a process that can be applied at different stages of actors’ interactions (from preventing tensions to contributing to the effective resolution of conflicts) and levels of intervention (from local to international power dynamics) (Vij et al., 2020; Bréthaut et al., 2019).

Table 12.2 Summarized outcomes of global monitoring Indicator 6.5.2, 2017 and 2020

<table>
<thead>
<tr>
<th>2017</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countries sharing transboundary basins (rivers, lakes and aquifers)</td>
<td>153</td>
</tr>
<tr>
<td>Countries having reported on the status of their transboundary cooperative arrangements</td>
<td>107</td>
</tr>
<tr>
<td>Countries having reported that 100% of their transboundary basin area was covered by operational cooperative arrangements</td>
<td>17</td>
</tr>
<tr>
<td>Countries reporting on having at least one operational aquifer-specific cooperative arrangement in place</td>
<td>5</td>
</tr>
<tr>
<td>Countries reporting about at least one aquifer covered by an operational river basin arrangement or bilateral arrangement</td>
<td>36</td>
</tr>
</tbody>
</table>

Source: Based on UNECE/UNESCO (2021).
Box 12.4 Towards cooperation in the Senegalo-Mauritanian Aquifer Basin to promote peace and resilience among States

The Senegalo-Mauritanian Aquifer Basin (SMAB), shared between Gambia, Guinea-Bissau, Mauritania and Senegal, extends over approximately 1,300 km and underlies a surface area of 331,450 km² with an estimated population of over 15 million inhabitants. The resource is under pressure due to an increasing demand for water caused by population growth, rapid urbanization and the development of agriculture for food self-sufficiency.

The first monitoring on SDG Indicator 6.5.2 highlighted that this transboundary aquifer is not yet subject to a bilateral or multilateral agreement or arrangement for cooperation. Riparian states have begun discussions with a view to developing transboundary collaboration. A Regional Working Group (RWG) for Transboundary Cooperation on the SMAB, comprising the states as well as the transboundary basin organizations in place in the Senegalo-Mauritanian aquifer basin, namely, the Organization for the Development of the Gambia River and the Senegal River Basin Development Authority, was established in May 2020. The RWG has the mandate to provide support and advice to establish transboundary cooperation for the concerted sustainable management of the SMAB. The RWG is engaged in the project conception and action plan in order to fulfill this mandate, with the support of the Geneva Water Hub, the Secretariat of the Convention on the Protection and Use of Transboundary Watercourses and International Lakes provided by the United Nations Economic Commission for Europe (UNECE), and the International Groundwater Resources Assessment Centre (IGRAC).

Ministers from The Gambia, Guinea-Bissau, Mauritania and Senegal signed, in September 2021, a declaration on the establishment of institutional transboundary cooperation around the Senegal–Mauritanian Aquifer Basin. The ministers also agreed to begin talks on the creation of a mechanism to ensure the concerted and sustainable management of their shared groundwater resources.

The experience of Senegalo-Mauritanian Aquifer basin cooperation provides an example of how the SDG reporting process can help to identify gaps in cooperation and lead to concrete improvements.

Source: Adapted from BGR/UNESCO (2008).
Chapter 13

Financing for sustainability

World Bank
Diego Rodriguez and Anna Delgado

With contributions from:
Francois Bertone, Lucy Lytton and Stuti Sharma (World Bank), Laureen Missaire (CDP), and Alvar Closas (NSW Department of Planning, Industry and Environment, Australia)
13.1 The current level of investment is insufficient to achieve SDG6 targets
Estimates of required investments to achieve Sustainable Development Goal (SDG) 6 vary due to the lack of accurate and reliable data, but there is a clear agreement (Hutton and Varughese, 2016; WWC, 2018; OECD, 2019b) that the current level of investment is insufficient to meet the agreed targets. Projections of global financing needs for water infrastructure to achieve SDG 6 range from US$6.7 trillion by 2030 to US$22.6 trillion by 2050 (OECD, 2018). Estimates also show that governments and development agencies have insufficient funds to meet these requirements (Kolker et al., 2016). Official Development Assistance (ODA) for water is around US$13 billion per year – far short of what is required (United Nations, 2018) – and about 80% of countries reporting to the United Nations on SDG 6 say they have insufficient financing to meet the national water targets (United Nations, 2018). There is a need to improve the use of existing public and aid resources to catalyse blended finance solutions and to mobilize additional and innovative forms of domestic and international finance. The private sector and global private financial institutions also need to be leveraged to close the funding gap.

13.1.2 Data on current and required investments in groundwater development, governance and management are insufficient
In contrast with surface water, where capital costs tend to be covered by the public sector, groundwater development infrastructure is usually financed by the end user, be it an industry, a household, a farmer, or a community. Users access the resource directly and in a decentralized way. This makes it challenging to track financing flows and to gather data on groundwater investments. The end users invest their private capital for the cost of accessing groundwater, which usually consists of a fixed cost for a well and a variable cost for pumping (World Bank, 2010; Groundwater Governance Project, 2016a). In some countries, there might be an abstraction fee or a groundwater tariff, but these fees and tariffs rarely reflect the true costs and value of the resource.

Furthermore, while some data exist on general water resource management government budgets (OECD, 2012b), data specifically on groundwater are very limited. The UN Summary Progress Update 2021 on SDG 6 raises the issue of the lack of groundwater data47 and the lack of groundwater monitoring initiatives, emphasizing that groundwater monitoring is a ‘neglected area’ (United Nations, 2018; UN-Water, 2021). Groundwater is also considered to be under-represented in the monitoring of the achievement of SDG 6 (UN Water, 2018). Several reports (Groundwater Governance Project, 2016a, 2016b; OECD, 2017b) agree that shortage of funding is a constraint to groundwater governance and management in most countries, including those where groundwater represents a significant share of the supply for domestic, irrigation, or industry/mining.

13.2 There is a need to establish adequate government budgets for groundwater-based water supplies, governance and management
Groundwater resources are essential for long-term socio-economic security and prosperity, and to build resilience in water supply systems. Nevertheless, in most countries, there are very limited resources allocated to the monitoring, management and preservation of these valuable resources. Given the characteristics of groundwater use and the challenges of measurement and monitoring, many state-centred initiatives fail or are ineffective in developing, governing and managing groundwater (Garduño and Foster, 2010; Foster et al., 2010c; World Bank, 2010, 2018a; Molle and Closas, 2019). Therefore, governments

47 Only 14 countries reported data on groundwater bodies quantity, and 25 countries reported data on groundwater quality (out of the 193 member states requested to provide data) (United Nations, 2018). In the updated version, only 52 countries have some information about groundwater, which is problematic because groundwater often represents the largest share of freshwater in a country (UN-Water, 2021).
Groundwater storage and abstraction can be included as part of urban water supply in order to add security and flexibility in case of seasonal resource variation.

13.2.2 Proper financing requires recognizing the value and potential of groundwater

Groundwater resources tend to be undervalued, especially where their exploitation is uncontrolled (Garduño and Foster, 2010) and their quality not protected. Groundwater resources are used for multiple purposes and provide an array of benefits (see Figure 13.1). There is an opportunity to better integrate sustainable groundwater development and management as part of other water sector projects and initiatives. For example, groundwater storage and abstraction can be included as part of urban water supply in order to add security and flexibility in case of seasonal resource variation (World Bank, 2018a). This would allow to further leverage existing funding from ODA, from water supply and sanitation tariffs, and even from public–private partnerships. It is also necessary to better analyse and understand the costs and benefits of groundwater management action (and inaction\(^{48}\)) in economic terms, considering opportunity costs, externalities, and social and environmental benefits. This could help put groundwater issues higher up the political agenda to secure commitment and leverage different types of financing (Groundwater Governance Project, 2016c).

Figure 13.1 Total economic value of groundwater

Source: OECD (2017b, fig. 1.2, p. 20). All rights reserved.

\(^{48}\) The counterfactual risk of not financing water infrastructure should also form part of the ‘bankability’ evaluation and decision process (WWC, 2018).
13.3 Towards more efficient and innovative ways of using finance

If groundwater accounts for a sizeable proportion of the total volume distributed through water supply infrastructure, the water tariff, if properly set, can provide financing for groundwater management (for the case of Denmark, see OECD, 2017b). However, even cost recovery is challenging in most countries (United Nations, 2021) and costs for water resources management are rarely reflected in the water bill. Therefore, water resources management is financed by a mix of abstraction levies, fees or tariffs, effluent or pollution charges, taxes, government budgets, and ODA (OECD, 2012b, 2017b; EEA, 2013).

Groundwater abstraction fees and/or tariffs can be levied on a volumetric basis and these instruments need to internalize the economic and social value of groundwater, using the polluter-pays, the beneficiary-pays, the equity and the policy coherence principles (OECD, 2012b). Charges can also be based on other parameters that serve as a proxy for water withdrawn (land area, pump capacity, etc. – Molle and Berkoff, 2007; EEA, 2013). Collected revenues should be earmarked to finance groundwater-related initiatives, such as monitoring infrastructure and related operating and maintenance costs (Box 13.1). There are examples of countries with groundwater tariffs and/or groundwater abstraction fees, such as certain member states of the European Union (ARCADIS, 2012; EEA, 2013), as well as Australia (Goulburn-Murray Water, 2013), China, Israel, Jordan, Peru (Box 13.1) and the USA (OECD, 2010a), among others. However, in many countries there is no water price or water tariff for groundwater, especially for irrigation purposes, in part due to the difficulties in monitoring and enforcement and the political importance of the agricultural sector (which also results in the lack of political will). Molle and Berkoff (2007), ARCADIS (2012) and Berbel et.al. (2019) further discuss water pricing for irrigation (including groundwater).

Box 13.1 Combining fees and tariffs to improve the management, monitoring and development of groundwater resources in Peru

The National Water Authority (ANA – in Spanish) collects water abstraction (for surface and groundwater) and water pollution fees to finance the management of water resources. This fee is an innovative instrument as it incorporates scarcity risk in its design, is based on the polluter-pays principle, and is charged according to the volume used. For groundwater, Peru’s aquifers are classified into three categories: underexploited, in equilibrium, and overexploited, depending on the demand/availability ratio of each aquifer. Although there are challenges with groundwater monitoring and enforcement, ANA is making improvements and currently 23% of total revenues collected by ANA come from groundwater fees. In addition, in 2018 Peru started implementing a groundwater management and monitoring services tariff for non-agricultural users with their own wells. This tariff is to be charged by the water utility (EPS – Empresas Prestadoras de Servicios in Spanish) and is linked to an investment plan to monitor, restore, preserve and manage aquifers.

Source: OECD (2021) and SUNASS (2017).

Given the abovementioned challenges, traditional financing (tariffs, taxes and transfers) needs to be used more efficiently and innovatively, in combination with other instruments, arrangements and mechanisms in order to attract other financing sources and successfully finance sustainable groundwater development, governance and management. New technologies, such as remote sensing, mobile payments, swipe cards, solar pumping and pre-paid meters (Box 13.2), can help improve the efficiency of service delivery, regulate the use of groundwater, collect revenues from such tariffs/fees, and reach local communities (Groundwater Governance Project, 2016a). Fees and taxes in other sectors, such as in agriculture, can also help finance groundwater initiatives and reduce potential negative externalities. For example, the State of Montana (USA) charges pesticide and fertilizer...
registration fees and uses the revenues to fund groundwater quality monitoring initiatives (OECD, 2010b). Blended finance (OECD, 2019b; see also Box 13.2), public–private partnership (PPP) arrangements and other incentive mechanisms (Box 13.3) can be used to leverage the private sector, together with government budgets and ODA to finance groundwater initiatives. For example, under a PPP arrangement, the city of San Luis Potosí in Mexico was able to protect its aquifer by treating and using wastewater instead of groundwater for non-potable uses, such as for agriculture and industry (World Bank, 2018b). Funds from other sectors, such as energy and climate, can also be leveraged to finance groundwater initiatives, such as solar pumps (Box 13.2) or dedicated electricity lines to replace diesel-powered groundwater wells, to improve reliability, decrease costs and better regulate consumption in areas that are under threat of depletion (Groundwater Governance Project, 2016c).

Box 13.2 Combining blended finance with emerging technologies to provide safe water to rural villages in Tanzania

The Government of Tanzania, with support from the World Bank, is helping Community Water and Supply Organizations (COWSOs) to replace old and inefficient diesel-powered pumps with clean solar photovoltaic-powered pumps in about 150 villages in rural Tanzania. Diesel pumps are expensive to operate and maintain, which directly impacts the price of water, with further related concerns on equity and sustainability. However, COWSOs do not have the financial capital needed to invest in solar pumps, nor do they have the creditworthiness to raise capital on the financial market. The World Bank’s Global Partnership for Results-Based Approaches (GPRBA) provides 60% of the capital as grant resources and the rest is financed through a four-year loan from the TIB Development Bank. In addition, the COWSOs use an innovative mobile-banking payment platform and pre-paid meters to better manage revenue collection from water sales and to manage loan payments. The benefits of this initiative are several, including:

- harnessing the power of private sector financing through blended subsidy-loan combinations;
- realizing environmental and economic benefits from transitioning from diesel pumps to solar pumps, in the form of lower CO₂ emissions and high life cycle cost savings; and
- each COWSO generating, through participating in the project and repaying the investment loan, a 3–5 year credit history: an important step towards creditworthiness.

Source: Welsien (2016).

13.3.2 Identifying, assessing, and redirecting subsidies for the sustainable development and management of groundwater resources

In many countries, publicly funded activities in other sectors contribute to the depletion or pollution of groundwater resources (Garduño and Foster, 2010; Groundwater Governance Project, 2016a; OECD, 2017b; World Bank, 2018a). Many times, subsidies are designed and implemented without considering the impact on the sustainability of groundwater and on those who depend on the resources. For example, subsidies in the energy sector that incentivize the over-extraction of groundwater by reducing electricity charges, or farm subsidies that encourage crops with high water demands, can become perverse incentives (Garduño and Foster, 2010; Groundwater Governance Project, 2016a). Moreover, this type of subsidy can be regressive in nature, benefiting wealthy users (Venkanta, 2021; World Bank, 2018a). Similarly, fertilizer subsidies lead to overuse and contamination of groundwater with nitrates. Hence, coherence in policies of different sectors needs to be ensured. Reforming harmful subsidies and aligning them with groundwater policies should be part of the water financing agenda (Garduño and Foster, 2010; OECD, 2018). The financial resources freed from perverse subsidies can be used to protect and restore groundwater resources and to subsidize those who need it the most (vulnerable and disadvantaged groups). Instead of subsidizing farmers...
with low energy costs to overpump groundwater, governments could subsidize water efficiency programmes or community-led/owned initiatives to monitor and develop groundwater resources (World Bank, 2020), or support payment for environmental services to recharge groundwater (Box 13.3), carefully making sure that the most vulnerable groups reap the benefits of all these interventions (Groundwater Governance Project, 2016a). For example, poor farmers can become the beneficiaries of the payments for ecosystems, and community-led or women-led initiatives can ensure that vulnerable groups are included and represented.

13.3.3. The role of global financial institutions

Financial institutions’ largest impact on water stems from the activities they enable through their loans, investments and insurance underwriting (CDP, 2020). Banks, shareholders, insurers and the financial institutions that own them currently enable companies to undertake economic activities, which in many cases are profoundly detrimental to the environment. The financial services sector has an especially critical role to play in the transition to a water-secure future (Hogeboom et al., 2018; WWF, 2019). Global financial institutions can offer unique, systemic incentives for change by ensuring that their investment, insurance, lending, rating and underwriting practices drive these water users to use water wisely, to not pollute water and to promote its reuse (WWF, 2019; CDP, 2020).

Box 13.3 Payment for Ecosystem Services with private sector financing: The case of Kumamoto (Japan)

Groundwater in the Kumamoto region provides for 100% of the drinking water of Kunamoto City, and it is also an essential source of water for agriculture and industry in the region. Irrigated rice paddy fields in the area are the main source for groundwater recharge. However, a government supply restriction policy limits the amount of rice acreage, which together with urbanization, has forced some farmers to abandon their paddy fields, decreasing groundwater levels. A subsidiary of Sony Semiconductors, which depends on the availability of groundwater for its operations, reached an agreement with farmers to prevent groundwater depletion and secure their business activities in the future while also becoming ‘water-neutral’. Through a Payment for Ecosystem Services (PES) scheme, the company paid farmers to recharge groundwater by voluntarily flooding old rice fields that had been converted to crop fields. The PES scheme was so successful that eventually the city’s government, the Council for Sustainable Water Use in Agriculture and other industries joined the effort, expanding the programme. This case shows how PES can help reverse groundwater depletion and demonstrates the importance of policy coherence across agricultural, urban and water policies.

Source: OECD (2017b).

49 “Existing studies reveal that technical measures aimed at the modernisation of the irrigation system, followed by the implementation of volumetric pricing, have much higher water saving potential compared to simple price increases” (EEA, 2013, p. 12).

50 Given their decentralized nature, strong community participation is key to ensure the sustainable development, monitoring and management of groundwater resources. Involving the communities helps ensure that the most vulnerable groups have access to the benefits (Garduño and Foster, 2010; World Bank, 2010, 2018a).
Chapter 14

Conclusions

WWAP
Richard Connor, Jac van der Gun and Michela Miletto
14.1 The multiple roles and facets of groundwater

Human society currently relies heavily on groundwater to meet domestic needs as well as to produce food and support economies. Groundwater supplies approximately 25% of all freshwater abstracted on Earth, but its share in consumptive water use is much higher, as are the overall benefits that it provides. Groundwater plays an essential role in climate change adaptation and mitigation, and its contribution to meeting the targets of Sustainable Development Goal (SDG) 6 as well as the other water-related SDGs is fundamental. Yet, groundwater itself, as well as its direct and indirect benefits, has all too often remained unseen or ignored, leaving numerous aquifers inadequately protected.

Many of the world’s largest cities, and numerous smaller cities and towns, rely on groundwater as their major source. This dependence will intensify, particularly in the rapidly urbanizing areas of developing countries and emerging economies. Groundwater is also the primary source of domestic water in most rural areas.

Agriculture is increasingly reliant on groundwater for irrigation and watering livestock, especially in arid and semi-arid areas. Groundwater is a particularly important source of water for smallholder farmers, and will play an essential role in meeting the growing demand for food.

Groundwater supports all sorts of manufacturing industries, especially where surface water is limited or when high-quality water is required. It serves multiple purposes, from process water to cleaning and cooling. Industries with significant subsurface activities, such as the oil, gas and mining sectors, interact intensively with groundwater, aquifers and the subsurface environment, and thus bear special responsibility for protecting these resources.

Relationships between ecosystems and groundwater are a two-way street. The ecology of many rivers, lakes and wetlands is directly supported by aquifers. These groundwater-dependent ecosystems (GDEs), which also include a great deal of terrestrial biomes, are critical to maintaining biodiversity. Many GDEs serve to enhance aquifer recharge – hence the two-way relationship – such that ecosystem (and especially wetland) protection is good for groundwater, and vice versa. Worldwide, GDEs are degrading as a consequence of intensive groundwater abstraction and a lack of protective measures.

Due to the huge volumes of groundwater (representing 99% of all liquid water stored on Earth), aquifers can serve as a buffer in times of water scarcity, enabling people to survive in even the driest of climates. Depending on their depth and geological setting (such as overlying unsaturated zones and confining layers), aquifers are comparatively well protected against pollution incidents on the surface. However, once groundwater becomes contaminated, it can be extremely difficult and costly to remedy.

14.1.2 Supply by utilities versus self-supply

Urban water supply is commonly entrusted to utilities. While local water supply operators struggle to keep up with increasing demand, groundwater self-supply – often self-financed – provides a rapid solution in urban zones where it is technically feasible to those who can afford it. Groundwater is also very well suited for rural self-supply and it is often the most cost-effective way of providing a secure water supply to villages.

In the agricultural sector, groundwater is most commonly abstracted by farmers themselves. Self-supply is also the predominant mode among the larger industrial groundwater users. Self-supply implies extremely fragmented decision-making, which is difficult to control.
14.1.3 Groundwater and energy
On average, extracting groundwater undoubtedly requires much more energy than diverting surface water, because it has to be lifted to the surface. On the other hand, it usually requires much less energy for conveyance (due to a smaller average distance between the site of abstraction and the user) and for treatment (as the water quality is usually much better). Affordable solar-powered irrigation systems, adopted at scale to service farming operations, may provide a renewable, low-carbon energy source to pump up groundwater.

Groundwater is also used in power generation as well as in primary energy production, such as the coal, oil and gas sectors. Specific data on this type of groundwater use is only readily available for a few industrialized nations. The extraction of underground resources, and the various methods used, can pose severe threats to groundwater quality.

14.1.4 Climate change and other challenges
Although located underground, groundwater is not excluded from being affected by climate change. Changes in the Earth’s water cycle through processes of precipitation and evaporation have their impacts on groundwater recharge. Shallow or near-surface aquifers, which are most commonly relied upon as a source of freshwater, are also the most vulnerable. Yet, for climate change mitigation and adaptation, groundwater also offers solutions.

In terms of mitigation, geothermal power plants are, contrary to wind and solar energy plants, well suited to produce a stable electrical base load and offer a great deal of opportunities for expansion. Groundwater can also be used for direct heating and cooling purposes. Certain geological sites, including deep aquifers, are suitable for the storage of CO₂ as part of carbon capture and storage processes. In terms of climate change adaptation, aquifers offer a relatively low-cost alternative for surface water storage and – above all – they offer a unique buffer capacity, which reduces the impacts of increasing climatic variations and facilitates the smooth transition to water use practices that are compatible with changing climatic conditions. Making water supplies resilient to climate change will, in many parts of the world, involve using groundwater conjunctively with rivers, lakes and surface water reservoirs.

In spite of the relatively high abundance of groundwater, many of the world’s aquifers are overexploited, including even some that are receiving significant recharge. This has resulted in steady declines of water levels, in some cases beyond the limits of economically feasible withdrawal. In addition to reducing overall freshwater availability, intensive groundwater extraction has led to land subsidence in many areas.

The abstraction and use of groundwater is not necessarily limited to renewable groundwater. Even non-renewable resources can be considered. Certain regions in Africa, for example, hold considerable quantities of non-renewable groundwater supplies that can be made available during periods of severe water stress in order to maintain water security. Caution in doing this is essential, though. Consideration for future generations and for the economic, financial and environmental aspects of storage depletion should not be overlooked.

Groundwater pollution is a major challenge worldwide. Many sources of pollution are ubiquitous in urban and other settlements. The existence of ill-constructed or poorly maintained on-site sanitation facilities has led to persistent pathogen contamination of water abstracted from nearby shallow wells, particularly in rural settlements. Yet agriculture is the primary cause of groundwater pollution in rural areas. Increased pollution control efforts, in both urban and rural settings, are sorely needed. Industry, including its subsurface components such as hydrocarbon development and various forms of mining, produce a large diversity of pollutants, forming severe threats to groundwater quality. Protection of groundwater quality by effective regulation and strict enforcement is urgently required in all sectors, but adequate practices are still rare.
14.1.5 Data, information and knowledge on groundwater and aquifers
The lack of detailed information and knowledge about local groundwater resources is a major challenge in many countries. The UN Summary Progress Update 2021 on SDG 6 raises the issue of the lack of groundwater data and the lack of groundwater monitoring initiatives, emphasizing that groundwater monitoring is a ‘neglected area’. Outside of Europe, North America and large Asian countries like India and China, regular monitoring of groundwater levels or quality, the first step towards groundwater management, is restricted to only a few countries.

14.2 Moving forward

14.2.1 Groundwater deserves to be put high on the agendas
The General Assembly of the United Nations, as well as the Human Rights Council, recognize that equitable access to safe and clean drinking water and sanitation are distinct human rights. UN Member States are expected to realize the human rights to safe drinking water and sanitation through action plans or strategies, thereby actively promoting awareness and capacity-building. Due attention should be paid, among other things, to sustainable water supplies, treatment before consumption if raw water quality is inadequate, and – since groundwater is an essential component of water supply and sanitation – to groundwater protection and aquifer recharge.

Groundwater plays also a very important role in other sectors such as agriculture, industry and the environment, with positive impacts on economies, incomes, welfare and ecosystems. Pro-active and capable groundwater custodians are needed to ensure the sustainability of the required groundwater services.

14.2.2 Good groundwater governance and management are crucial
It is essential that countries commit themselves to developing an adequate and effective framework for groundwater governance. This requires that governments take the lead and assume responsibility to set up and maintain a fully operational governance structure, including: the knowledge base; institutional capacity; laws, regulations and their enforcement; policy and planning; stakeholder participation; and appropriate financing. It is also incumbent upon countries to ensure that their policies and plans are fully implemented (groundwater management).

14.2.3 Data, information and knowledge are indispensable guides towards proper groundwater development and management
Scientific knowledge in hydrogeology and the methods and tools available are sufficient to address most groundwater management issues, like siting wells, optimizing abstraction and predicting its effect at the local and regional scales, and preventing contamination. The challenge lies more with the scarcity of reliable area-specific data on groundwater, especially in low-income countries, and with the limited dissemination of data, information and knowledge among researchers, practitioners and decision-makers. Effective government responses include – first and foremost – developing and maintaining a dedicated groundwater knowledge base.

Regarding aquifer exploration and assessment, the data and information acquisition of groundwater agencies may be complemented by the private sector. Particularly the oil and mining industries possess a great deal of data, information and knowledge on the composition of the deeper domains underground, including aquifers. It is highly desirable that they would share these with public sector professionals in charge of groundwater assessment and management. In addition to exploration and assessment, groundwater monitoring activities are also essential. They have to provide spatially differentiated information on changes over time of water levels, groundwater abstractions and groundwater quality – which is essential for underpinning proper decisions on groundwater development and management.
14.2.4 Strong institutions are key to progress in groundwater management

Qualified personnel with the capacity to conduct hydrogeological and geophysical studies are often scarce. Siting and constructing the higher-yielding boreholes that are necessary for large-scale irrigation or town supplies in complex hydrogeological environments requires considerable expertise. The same is true for activities like groundwater policy and planning, and for implementing and enforcing groundwater management measures.

However, in many countries, the general lack of groundwater professionals among the staff of institutions and local and national government, as well as insufficient mandates, financing and support of groundwater departments or agencies, hamper effective groundwater assessment, monitoring, planning, development and management. The formation of human and institutional capacity can be reinforced by, for example, long-term bilateral cooperation projects, academic exchange programmes or postgraduate training opportunities abroad. Crucial, however, is the commitment of governments to build, support and maintain institutional capacity related to groundwater.

14.2.5 Stakeholders have a diversity of interests and should not be ignored

Groundwater governance and management can be challenging because of the common-pool nature of groundwater resources, along with information gaps and the diversity of stakeholders and their interests. As groundwater can be accessed over vast geographical areas, it is often difficult for governments to quantify, allocate and regulate withdrawals, particularly if their resources are limited. The corollary is that almost everywhere, groundwater governance and management must include public and private stakeholder interests, as well as local communities. It is imperative that governments assume their role as resource custodians in view of the common-good aspects of groundwater and ensure that access to (and profit from) groundwater is distributed equitably and that the resource remains available for future generations. Where feasible, it is advantageous to involve stakeholders in the processes of assessing, monitoring, planning and decision-making.

14.2.6 Legal provisions clarify agreed rights and rules of the game regarding groundwater

Laws and regulations that incorporate societal goals and policy objectives, and that set an enabling and regulatory framework for achieving those goals, are fundamental components of groundwater governance and management. Stable legal frameworks also enable governments and groundwater users to plan for resources management over the long term and to deal with competing interests, including those of the environment and of future generations. International water law identifies the rights and obligations of sovereign states in relation to rivers, lakes, basins and aquifers that are bisected by, form, or underlie (in the case of groundwater) an international boundary line. It has recently begun to specifically address aquifers and groundwater, and a few agreements have been successfully concluded by countries sharing transboundary aquifers and groundwater.

Legal instruments to control groundwater abstraction include the mandatory licensing for constructing wells and for abstracting groundwater, and the obligation to pay charges for volumes of water abstracted and taxes as a component of the price of water supplied.

Groundwater contamination prevention measures include: prohibiting or limiting certain polluting and water-using activities; limiting the use of pesticides, herbicides and fertilizers; restricting certain cropping patterns; reducing animal grazing intensity; reclaiming agricultural land; and managing drainage. Illegal emission and discharge of substances into water bodies or into the ground, or unlawful treatment of wastewater, may be considered an offence or crime. Most of these measures require regulations based on legislation. Enforcement efforts and the prosecution of polluters, however, are often challenging due to groundwater’s invisible nature.
14.2.7 Transboundary aquifers call for cooperation

Transboundary aquifers (i.e. aquifers with segments in two or more countries) require special attention because groundwater pollution and changes in groundwater levels and pressures may have their origin in a neighbouring country. This adds a distinct, international, dimension to groundwater governance and management, making it more complex. Their importance has only recently come to the attention of the international community, opening additional opportunities for promoting transboundary cooperation through new dedicated financial resources. The main outputs so far include global and regional inventories, the Draft Articles on the Law of Transboundary Aquifers (commended by several resolutions of the United Nations General Assembly), and formal interstate cooperation agreements in force for six transboundary aquifers. Nevertheless, there are several hundreds of important transboundary aquifers in the world. Together, they represent a sizable share of global groundwater resources and many of them are connected to valuable freshwater ecosystems. Increased efforts for establishing transboundary aquifer cooperation therefore need to be a priority.

14.2.8 Groundwater policy and planning provide road maps for concerted action

Due attention needs to be given to policy and planning, in order to provide guidance for groundwater governance and for consistent and concerted groundwater management activities, to the benefit of the entire society. Groundwater policy should be contingent on the legal status and nature of ownership of groundwater (public or private) of the water users, the interrelated surface water features, and the land use in aquifer recharge areas. It also should provide for integrated decision-making on groundwater resources and aquifer systems, and connect to other sectors and domains of society beyond the water sector – such as socio-economic development, gender equality and poverty alleviation, food and energy, ecosystems, climate change, and human health.

Open and participatory groundwater planning processes can generate greater public support and acceptance of the resulting plan and, by extension, of operational management. Open and participatory groundwater planning processes can generate greater public support and acceptance of the resulting plan and, by extension, of operational management. Such planning involves scientists, resource management specialists, stakeholders and decision-makers, and should be accessible to non-specialists, inviting users to participate. Planning of groundwater resources is as much a matter for government bodies as for end users, collectively or individually. At the local scale, data gathering and information analysis will by necessity be limited; yet, all levels can benefit from capacity development and awareness-raising. Likewise, sex-disaggregated data, and ensuring the participation of women in data generation and decision-making (usually male-dominated), are vital in order to acquire a gendered dimension.

Groundwater management plans translate policy into a programme of action, providing a blueprint for its implementation. A variety of tools can be used to manage groundwater withdrawals. Which tools are used will depend on the approach to management defined by the governance and policy regimes in place. Not all management occurs through government: for instance, communities and/or groundwater users themselves may independently choose to manage well siting and groundwater abstractions. Where groundwater has historically been subject to minimal or zero regulation, groundwater users may view management actions as expropriation of private property. Allowing for exempt uses, such as for domestic use or livestock, or a fixed amount of inframarginal pumping (usually a small volume of water that can be pumped without being subject to regulations or tariffs, usually for the purposes of meeting basic human needs or household-scale farming), can help overcome resistance to control through regulation and pricing. However, care needs to be taken to ensure exempt uses do not undermine management objectives. Equity is an important consideration, as management actions that differentially affect groundwater pumpers and users can lead to conflict.
The interrelationships between aquifers and surface water, land use, ecosystems, and the use of subsurface space and resources imply that groundwater policy and planning need to be embedded in a wider policy context (i.e. horizontal integration), as each of these are directly linked to groundwater availability and quality. Approaches such as managed aquifer recharge (MAR) and conjunctive water management embrace these interrelationships. The potential and feasibility of tapping into unconventional groundwater resources (e.g. brackish groundwater, offshore fresh or brackish groundwater) should also be explored.

14.2.9 Financing: the fuel for action

Groundwater governance and management require substantial structural financing. However, mechanisms for allocation of government funds or for raising funds from private sources are in many cases rather poorly developed. In many countries, there is no price or tariff for groundwater, especially for irrigation purposes, in part due to the difficulties in monitoring and enforcement, and the political importance of the agricultural sector (which also results in the lack of political will).

If groundwater is included as part of distributed water supply infrastructure, the water tariff, if properly set, can provide financing for groundwater management. However, even cost recovery is challenging in most countries and costs for water resources management are rarely reflected in the water bill. Therefore, water resources management is financed by a mix of abstraction levies, fees or tariffs, effluent or pollution charges, taxes, government budgets, and Official Development Assistance (ODA). In addition, there are opportunities to better integrate sustainable groundwater development and management as part of water sector projects and initiatives. For example, MAR projects can be included as part of urban water supply in order to add security and flexibility in case of seasonal resource variation. It is also worthwhile to better analyse and understand the costs and benefits of groundwater management action (and inaction) in economic terms, considering opportunity costs, externalities, and social and environmental benefits. This could help put groundwater issues higher up the political agenda to secure commitment and leverage different types of financing.

The Earth’s total groundwater resources represent an enormous supply of freshwater. In a world of ever-growing water demand, where surface water resources are often scarce and increasingly stressed, the value of groundwater is poised to become progressively recognized by everyone, as a resource that has allowed human societies to flourish since millennia.

However, in spite of its overall abundance, groundwater remains vulnerable to overexploitation and pollution, both of which can have devastating effects on the resource and its availability. Unlocking the full potential of groundwater will require strong and concerted efforts to manage and use it sustainably. And it all starts by making the invisible visible.

_____ Unpublished. 2021 data obtained from Cate Lamb (CDP Global Director, Water Security, CDP and UNFCC COP26 High Level Climate Action Champions Lead – Water) and Laureen Missaire (CDP, Senior Project Officer, Water Security).

Gilbrich, W. H. and Struckmeier, W. F. 2014. 50 Years of Hydro(geo)logical Mapping Activities. Paris, UNESCO.

Statistics Canada. n.d. Table 38-10-0070-01. Water intake in mineral extraction and thermal-electric power generation industries, by source, by region and by industry (x 1,000,000). doi.org/10.25318/381000701-eng.

SUNASS (Superintendencia Nacional de Servicios de Saneamiento). 2017. Nuevo régimen especial de monitoreo y gestión de uso de aguas subterráneas a cargo de las EPS: Metodología, criterios técnico-económicos y procedimiento para determinar la tarifa [New special groundwater monitoring and use management scheme under the responsibility of the sanitation services providers: Methodology, technical-economic criteria and method to determine tariffs]. Lima, SUNASS. hdl.handle.net/20.500.12543/4679. (In Spanish.)

Abbreviations and acronyms

ANA National Water Authority (in Peru)
ATES Aquifer Thermal Energy Storage
ASR Aquifer Storage and Recovery
CDP formerly the Carbon Disclosure Project
CMIPS Coupled-Modelled Inter-Comparison Project Phase 5
COWSO Community Water and Supply Organizations
DBP Disinfection By-Products
DDT Dichlorodiphenyltrichloroethane
DIKTAS Dinaric Karst Transboundary Aquifer System
EGS Enhanced Geothermal System
EIPs Eco-Industrial Parks
ENSO El Niño Southern Oscillation
ET Evapotranspiration
EU European Union
EUWI+ European Union’s Water Initiative Plus
GAA Guarani Aquifer Agreement
GAS Guarani Aquifer System
GDE Groundwater-Dependent Ecosystem
GEF Global Environment Facility
GGIS Global Groundwater Information System
GGRETA Governance of Groundwater in Transboundary Aquifers
GPCP Global Precipitation Climatology Project
GRACE Gravity Recovery and Climate Experiment
GSHP Ground Source Heat Pumps
GWB Groundwater Body
GWS Groundwater Storage
HDPE High-density polyethylene
IEA International Energy Agency
IGRAC International Groundwater Resources Assessment Centre
IHP Intergovernmental Hydrological Programme
ILC International Law Commission
ISARM Internationally Shared Aquifer Resources Management initiative
IWRM Integrated Water Resources Management
JMP Joint Monitoring Programme
LULC Land Use and Land Cover
MAR Managed Aquifer Recharge
MOEF Ministry of Environment and Forestry (Indonesia)
NDCs National Determined Contributions
ODA Official Development Assistance
P Precipitation
PES Payment for Ecosystem Services
PPP Public–Private Partnership
RECP Resource Efficient and Cleaner Production
RWG Regional Working Group
SAAB Amazon Aquifer System in Brazil
SADC Southern African Development Community
SDG Sustainable Development Goal
SIDS Small Island Developing States
SLR Sea Level Rise
SMAB Senegalo-Mauritanian Aquifer Basin
SPIS Solar-Powered Irrigation Systems
TBA Transboundary Aquifer
TSF Tailings Storage Facility
TWS Total Water Storage
UAE United Arab Emirates
UN United Nations
UNECE United Nations Economic Commission for Europe
UNESCO United Nations Educational, Scientific and Cultural Organization
UNIDO United Nations Industrial Development Organization
UNICEF United Nations Children’s Fund
USA United States of America
WASH Water, Sanitation and Hygiene
WHYMAP World-Wide Hydrogeological Mapping and Assessment Programme
WHO World Health Organization
WFD Water Framework Directive
WWDR World Water Development Report
ZLD Zero Liquid Discharge
UN-Water coordinates the efforts of United Nations entities and international organizations working on water and sanitation issues. By doing so, UN-Water seeks to increase the effectiveness of the support provided to Member States in their efforts towards achieving international agreements on water and sanitation. UN-Water publications draw on the experience and expertise of UN-Water’s Members and Partners.

SDG 6 Progress Update 2021 – summary
This summary report provides an executive update on progress all targets of SDG 6 and identifies priority areas for acceleration. The report, produced by the UN-Water Integrated Monitoring Initiative for SDG 6, presents new country, regional and global data on all the SDG 6 global indicators.

SDG 6 Progress Update 2021 – 8 reports, by SDG 6 global indicator
This series of reports provides an in-depth update and analysis of progress towards the different SDG 6 targets and identifies priority areas for acceleration: Progress on Drinking Water, Sanitation and Hygiene (WHO and UNICEF); Progress on Wastewater Treatment (WHO and UN-Habitat); Progress on Ambient Water Quality (UNEP); Progress on Water-use Efficiency (FAO); Progress on Level of Water Stress (FAO); Progress on Integrated Water Resources Management (UNEP); Progress on Transboundary Water Cooperation (UNECE and UNESCO); Progress on Water-related Ecosystems (UNEP). The reports, produced by the responsible custodian agencies, present new country, region and global data on the SDG 6 global indicators.

United Nations World Water Development Report
The United Nations World Water Development Report is UN-Water’s flagship report on water and sanitation issues, focusing on a different theme each year. The report is published by UNESCO, on behalf of UN-Water and its production is coordinated by the UNESCO World Water Assessment Programme. The report gives insight on main trends concerning the state, use and management of freshwater and sanitation, based on work done by the Members and Partners of UN-Water. Launched in conjunction with World Water Day, the report provides decision-makers with knowledge and tools to formulate and implement sustainable water policies. It also offers best practices and in-depth analyses to stimulate ideas and actions for better stewardship in the water sector and beyond.

UN-Water Global Analysis and Assessment of Sanitation and Drinking-Water (GLAAS)
GLAAS is produced by the World Health Organization (WHO) on behalf of UN-Water. It provides a global update on the policy frameworks, institutional arrangements, human resource base, and international and national finance streams in support of water and sanitation. It is a substantive input into the activities of Sanitation and Water for All (SWA) as well as the progress reporting on SDG 6 (see above).

The progress reports of the WHO/UNICEF Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (JMP)
The JMP is affiliated with UN-Water and is responsible for global monitoring of progress towards SDG6 targets for universal access to safe and affordable drinking water and adequate and equitable sanitation and hygiene services. Every two years the JMP releases updated estimates and progress reports for WASH in households, schools and health care facilities.

Policy and Analytical Briefs
UN-Water’s Policy Briefs provide short and informative policy guidance on the most pressing freshwater-related issues that draw upon the combined expertise of the United Nations system. Analytical Briefs provide an analysis of emerging issues and may serve as basis for further research, discussion and future policy guidance.

UN-WATER PLANNED PUBLICATIONS
- UN-Water Policy Brief on Gender and Water
- Update of UN-Water Policy Brief on Transboundary Waters Cooperation
- UN-Water Analytical Brief on Water Efficiency
- Country Acceleration Case Studies

More information: https://www.unwater.org/unwater-publications/
The United Nations designates specific days, weeks, years and decades as occasions to mark particular events or topics in order to promote, through awareness and action, the objectives of the Organization.

International observances are occasions to educate the general public on issues of concern, to mobilize political will and resources to address global problems, and to celebrate and reinforce achievements of humanity.

The majority of observances have been established by resolutions of the United Nations General Assembly. World Water Day (22 March) dates back to the 1992 United Nations Conference on Environment and Development where an international observance for water was recommended.

The United Nations General Assembly responded by designating 22 March 1993 as the first World Water Day. It has been held annually since then and is one of the most popular international days together with International Women's Day (8 March), the International Day of Peace (21 September) and Human Rights Day (10 December).

Every year, UN-Water — the UN's coordination mechanism on water and sanitation — sets a theme for World Water Day corresponding to a current or future water-related challenge. This theme also defines the theme of the United Nations World Water Development Report that is presented on World Water Day. The publication is UN-Water's flagship report and provides decision-makers with tools to formulate and implement sustainable water policies. The report also gives insight on main trends including the state, use and management of freshwater and sanitation, based on work by the Members and Partners in UN-Water.

The report is published by UNESCO, on behalf of UN-Water, and its production is coordinated by the UNESCO World Water Assessment Programme.
Accounting for the vast majority of all liquid freshwater on Earth, groundwater has the potential to provide societies with tremendous social, economic and environmental benefits and opportunities. Groundwater is central to the fight against poverty, to food and water security, to the creation of decent jobs, to socio-economic development, and to the resilience of societies and economies to climate change.

However, this natural resource is often poorly understood, and consequently undervalued, mismanaged and even abused. In spite of its overall abundance, groundwater remains vulnerable to over-exploitation and pollution, both of which can have devastating effects on the resource and its availability. In the context of growing water scarcity across many parts of the world, the enormous potential of groundwater and the need to manage it sustainably can no longer be overlooked.

The 2022 edition of the United Nations World Water Development Report, titled “Groundwater: Making the invisible visible”, describes the challenges and opportunities associated with the development, management and governance of groundwater across the world. The report addresses groundwater-related issues from the perspective of the three main water use sectors (agriculture, human settlements and industry), as well as its interactions with ecosystems and its relation with climate change. It highlights different regional perspectives and presents a number of response options concerning data and information, policy and planning, management and governance, as well as financing.

The United Nations World Water Development Report is UN-Water’s flagship report on water and sanitation issues, focusing on a different theme each year. The report is published by UNESCO, on behalf of UN-Water and its production is coordinated by the UNESCO World Water Assessment Programme. The report gives insight on main trends concerning the state, use and management of freshwater and sanitation, based on work done by the Members and Partners of UN-Water. Launched in conjunction with World Water Day, the report provides decision-makers with knowledge and tools to formulate and implement sustainable water policies. It also offers best practices and in-depth analyses to stimulate ideas and actions for better stewardship in the water sector and beyond.